期刊文献+

NATURAL SUPERCONVERGENT POINTS OF EQUILATERAL TRIANGULAR FINITE ELEMENTS - A NUMERICAL EXAMPLE 被引量:3

NATURAL SUPERCONVERGENT POINTS OF EQUILATERAL TRIANGULAR FINITE ELEMENTS - A NUMERICAL EXAMPLE
原文传递
导出
摘要 A numerical test case demonstrates that the Lobatto and the Gauss points are not natural superconvergent points of the cubic and the quartic finite elements under equilateral triangular mesh for the Poisson equation. A numerical test case demonstrates that the Lobatto and the Gauss points are not natural superconvergent points of the cubic and the quartic finite elements under equilateral triangular mesh for the Poisson equation.
出处 《Journal of Computational Mathematics》 SCIE CSCD 2006年第1期19-24,共6页 计算数学(英文)
基金 This research was partially supported by the U.S. National Science Foundation grant DMS-0311807.
关键词 Finite element method SUPERCONVERGENCE Triangular mesh Equilateral Finite element method, Superconvergence, Triangular mesh, Equilateral
  • 相关文献

参考文献14

  • 1A.B. Andreev and R.D. Lazarov, Superconvergence of the gradient for quadratic triangular finite element methods, Numer. Methods for PDEs, 4 (1988), 15-32.
  • 2I. Babugka and T. Strouboulis, The Finite Element Method and its Reliability, Oxford University Press, London, 2001.
  • 3I. Babuska, T. Strouboulis, C.S. Upadhyay, and S.K. Gangaraj, Computer-based proof of the existence of superconvergence points in the finite element method; superconvergence of the derivatives in finite element solutions of Laplace's, Poisson's, and the elasticity equations, Numer. Meth.PDEs., 12 (1996), 347-392.
  • 4H. Blum, Q. Lin, and R. Rannacher, Asymptotic error expansion and Richardson extrapolation for linear finite elements, Numer. Math., 49 (1986), 11-37.
  • 5C.M. Chen, Structure Theory of Superconvergence of Finite Elements, (in Chinese), Hunan Science Press, China, 2001.
  • 6C. Chen and Y. Huang, High Accuracy Theory of Finite Element Methods, (in Chinese), Hunan Science Press, China, 1995.
  • 7M. Krizek and P. Neittaanmaki, On superconvergence techniques, Acta Appl. Math., 9 (1987),175-198.
  • 8M. Kriaek, P. Neittaanmaki, and R. Stenberg (Eds.), Finite Element Methods: Superconvergence,Post-processing, and A Posteriori Estimates, Lecture Notes in Pure and Applied Mathematics Series, Vol. 196, Marcel Dekker, Inc., New York, 1997.
  • 9Q. Lin and N. Yan, Construction and Analysis of High Efficient Finite Elements, (in Chinese),Hebei University Press, China, 1996.
  • 10R. Lin and Z. Zhang, Natural superconvergent points of triangular finite elements, Numer. Meth.PDEs., 20 (2004), 864-906.

同被引文献19

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部