期刊文献+

量化Domain中的反向层次收敛

Backward-Convergence with respect to A Testing Sequence in the Quantitative Domain
下载PDF
导出
摘要 在LF-拟序集中引进了反向层次收敛理论.给出了反向层次收敛序列的性质和若干等价条件,得出了经典序伴随理论中一个重要性质的层次化版本.此外,还引进了紧性和全有界性等概念,它们是度量空间中相应概念在LF-伪序集中的对应形式.最后研究了可变层次结构的若干性质. This paper investigates backward-convergence theory with respect to a testing sequence. Backward-convergence with respect to a testing sequence is introduced and its properties and sufficient and necessary condition are presented. In addition, It obtains a new form of an important property in adjoint theory. The concepts of compactness and totally bounded property in LF-pseudo ordered sets are also introduced, which are correspondent to compactness and totally bounded property in metric spaces. At last, it discusses properties of variable testing sequences.
作者 路秀华 樊磊
出处 《首都师范大学学报(自然科学版)》 2006年第1期4-8,共5页 Journal of Capital Normal University:Natural Science Edition
基金 北京市教委项目资助(合同号:KM_200310028177) 国家自然科学基金(批准号:60473009)
关键词 LF-拟序集 层次收敛 反向层次收敛 层次伴随 紧性 全有界性 变层次结构 LF-preordered set, convergence with respect to a testing sequence, backward-convergence with respect to a testing sequence, adjoint pairs with respect to a testing sequence, compactness, totally bounded property, variable testing sequence.
  • 相关文献

参考文献7

  • 1Lei Fan.A New Approach to Quantitative Domain Theory[ J].Electronic Notes in Theoretical Computer Science 45 (2001).URL:http://www.elsevier.nl/locate/entcs/volume 45.html.
  • 2F.van Breugel,J.Warmerdam,Solving domain equations in a category of compact metric spaces[ J ].Report CS-R9424,CWI,Amsterdam,April 1994.
  • 3Fabio Alessi,Paolo Baldan.A characterization of distance between 1-Bounded compact ultrametric spaces through a universal space[ J ].Theoretical Computer Science,1998,193:113 ~ 127.
  • 4Rutten J.Elements of generalized ultrametric domain theory[J].Theoretical Computer.Science,1996,170:349 ~ 381.
  • 5Smyth M B.Totally bounded spaces and compact ordered spaces as domains of computation[ J].In G.M.Reed,A.W.Roscoe,and R.F.Wachter,editors,Topology and Category Theory in Computer Science,papes 207~ 229.Oxford University Press,1991.
  • 6Munkree J.Topology(2ed)[ M].Prentice-Hall,2000.
  • 7何伟,樊磊,王万良.量化Domain中的模糊收敛与伴随映射[J].模糊系统与数学,2004,18(z1):90-93. 被引量:1

二级参考文献7

  • 1[1]S. Abramsky, A. Jung, Domain theory [M], In S. Abramsky, D. Gabbay, T. Maibaum, editors, Handbook of Logic in Computer Science, vol. 3, pp. 1 ~ 168, Oxford University Press, 1995.
  • 2[2]B. Flagg et al. , A Logical Approach to Quantitative Domain Theory [J], preprint submitted to Elsevier1996.
  • 3[3]Fan Lei, A New Approach to Quantitative Domain Theory [J], Electronic Notes in Theoretical Computer Science, Vol. 45 (2001) .
  • 4[4]F.W. Lawvere, Metric Spaces, Generalized Logic and Closed Categories [J], Rend. Sem. Mat. e. Fisico di Milano, 43(1973), pp. 135 ~ 166.
  • 5[5]J.J.M.M. Rutten, Elements of generalized ultrametric domain theory [J], Theoretical Computer Science,170(1996), pp. 349 ~ 381.
  • 6[6]K. Wagner, Solving Recursive Domain Equations With Enriched Categories [M], Ph. D Thesis, Carnegie Mellon University 1994.
  • 7[7]Qi-Ye Zhang, Lei Fan, Continuity in Quantitative Domains [J], submitted to FSS.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部