期刊文献+

基于区域填充算法的PCB网络提取 被引量:3

Obtaining nets of PCB based on area filling algorithm
下载PDF
导出
摘要 随着电子技术的迅速发展,用于PCB行业的设备与技术也突飞猛进。飞针测试机作为判定PCB板的电气连接是否良好的PCB检测设备,可以准确无误地检测出PCB板上各点之间的开短路情况,从而发现PCB板上出现开短路错误的位置。而要对PCB板的物理通断进行电气测量,首先必须知道PCB板正确的物理连接(即PCB的网络分布)情况。文章将主要讲述如何利用一种图形区域填充的算法,从用于绘制PCB板的GERBER文件中获取PCB板的正确网络分布。 As a consequence of the fast development of electronic technology, the equipments and techniques used in PCB industry are advancing rapidly. Fly Probe Tester, which is an equipment used to test the electrical connection ofa PCB, can make sure that any two points in PCB are connected or disconnected. So it can find out the points, the electrical connections of which are incorrect. However, it is necessary to obtain the correct physical connections of the PCB (the correct net distributing of PCB) before testing it. An area filling algorithm was introduced. By this algorithm, the correct net distributing of PCB from the gerber files was obfained that were used to describe PCB.
出处 《计算机工程与设计》 CSCD 北大核心 2006年第4期672-675,共4页 Computer Engineering and Design
关键词 网络 区域 印刷电路板 GERBER net area PCB gerber
  • 相关文献

参考文献3

  • 1张泽彪,李式巨,程敏.图像区域标记和边沿检测的两步法[J].计算机工程与设计,2004,25(4):625-628. 被引量:5
  • 2Kenneth R,Castleman.Digital image processing[M].北京:清华大学出版社,2003.
  • 3清宏计算机工作室.C++builder多媒体开发[M].北京:机械工业出版社,1999..

二级参考文献9

  • 1Berthod M.Bayesian image classification using Markov random fields [J].IVC'1996'4(14):285-294.
  • 2Geman S,Geman D.Stochastic relaxation'gibbs distribution'and the bayesian restoration of images [J].IEEE T-PAMI,1984,(6):721-741.
  • 3Jeng F'Woods J M.Compound GMRF for image estimation[J].IEEE T-ASSP'1991'39:638-697.
  • 4Yu S'Berthod M.A game strategy approach to relaxation labeling[J].CVIU-'1995'61(1)32-37.
  • 5Yuille A L.Energy functions for early vision and analog networks [J].BC'1989'61:115-123.
  • 6Gunsel'Jain ,Panayirci.Reconstruction and boundary detection of range & intensity images using multiscale MRF representations [J].CVIU'1996'63(2):353-366.
  • 7Nadabar'Jain A K.Parameter estimation in Markov random field contextual models using geometric models of objects[J].IEEE TPAMI1996'8(3):326-329.
  • 8Descombes,Morris X'Zerubia R D'et al.Estimation of Markov random field prior parameters using Markov chain Monte Carlo maximum likelihood [J].IEEE Trans.on IP'1999'8(7):954-963.
  • 9Guodong Guo,Songde Ma.Bayesian learning,global competition'and unsupervised image segmentation [J].PRL,2000,21(2):107-116.

共引文献5

同被引文献19

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部