摘要
对中立型微分差分方程d[y(t)+Py(t-τ)]/dt+Q(t)y(t—τ)=0,其中P∈R,τ∈(0,∞),σ∈[0,∞),Q∈C([t0,∞),R+),得到了其一切解振动的充分条件及非振动解的渐近性质,其结果推广并改进了文献中的一些熟知定理.
The sufficient conditions for the oscillation of all solutions and the asymptotic charactehatics of non-oscillatory solutions of the neutral differential difference equation d [y (t) +Py (t - τ) ] /dt + Q (t) y (t-τ) =0 are obtained, where P∈R, τ∈e(0, ∞), τ∈[0,∞ ), Q∈C([t0,∞ ), R+). These results can extend and improve on some of the known theorems in the literature.
出处
《北京理工大学学报》
EI
CAS
CSCD
1996年第1期7-12,共6页
Transactions of Beijing Institute of Technology
关键词
中立型
振荡
渐近
微分差分方程
neutral type, oxcillation
asymptotic, differential-difference equations