期刊文献+

神经网络在混凝土多轴强度预测中的应用 被引量:2

The Application of Artificial Neural Networks in Prediction of Multiaxial Strength of Concrete
下载PDF
导出
摘要 目的采用人工神经网络技术来处理混凝土多轴强度间的非线性关系.方法运用BP网络模型对混凝土多轴强度试验数据进行分析,并与数学回归模型进行了比较.结果研究表明,只要选取合适的隐层节点个数和最优化的网络结构,建立的神经网络模型可以合理地模拟具有复杂非线性关系的混凝土多轴强度模型.结论该方法具有较高的预测能力,可以作为混凝土多轴强度准则研究的有益途径. The strength of concrete under multiaxial stresses is a function of the stress state, it is quite difficult to create a precise mathematical expression of the strength surface since the surface is a complex threedimensional one. The artificial neural network is regarded as a good tool to model the highly nonlinear systems, so in this study, the back propagation neural network (BPNN)is used for training and testing the multiaxial experimental data of concrete from document[9]. When choosing the appropriate number of hidden nodes and the optimal architecture of the network, the artificial neural network is effective in predicting the multiaxial strength. Finally, the conclusion is drawn that compared with regression-based strength models, the neural network approach provides better results as well as a new way for the further study of the failure criterion of concrete.
出处 《沈阳建筑大学学报(自然科学版)》 CAS 2006年第1期61-64,共4页 Journal of Shenyang Jianzhu University:Natural Science
基金 国家自然科学基金资助项目(50479059)
关键词 混凝土 多轴强度预测 神经网络 回归模型 concrete, multiaxial strength, artificial neural network, regression model
  • 相关文献

参考文献10

  • 1过镇海 时旭东.钢筋混凝土原理和分析[M].北京:清华大学出版社,2004..
  • 2Savita M A K,Nagpal.Neural network for creep and shrinkage deflections in reinforced concrete frames[J].Journal of Computing in Civil Engineering,2004,18(4):350-359.
  • 3Seleemah,Ayman A.A neural network model for predicting maximum shear capacity of concrete beams without transverse reinforcement[J].Canadian Journal of Civil Engineering,2005,32(4):644-657.
  • 4包龙生,于玲,王澍,张兰,杨炳成.基于神经网络的桥梁结构损伤识别分析[J].沈阳建筑工程学院学报(自然科学版),2004,20(1):33-35. 被引量:8
  • 5Ren L Q,Zhao Z Y.An optimal neural network and concrete strength modeling[J].Advances in Engineering Software,2002,26(7):117-130.
  • 6Dias W P S,Pooliyadda S P.Neural networks for predicting properties of concretes with admixtures[J].Construction and Building Materials,2001,15(7):371-379.
  • 7赵复笑,杨殿海,陈宏.基于神经网络的沥青混凝土路面使用性能预测[J].沈阳建筑工程学院学报(自然科学版),2004,20(2):121-123. 被引量:5
  • 8Sebastia,Marta,Fernandez,et al.Neural network prediction of unconfined compressive strength of coal fly ash-cement mixtures[J].Cement and Concrete Research,2003,32(2):1137-1146.
  • 9宋玉普.多种混凝土材料的本构关系和破坏准则[M].北京:水利水电出版社,2004.49-51.
  • 10Jiang Nan,Zhao Zhiye,Ren Liqun.Design of structural modular neural networks with genetic algorithm[J].Advances in Engineering Software,2003,26(4):17-24.

二级参考文献9

  • 1陈建林,郭杏林.基于神经网络的简支梁损伤检测研究[J].烟台大学学报(自然科学与工程版),2001,14(3):217-223. 被引量:19
  • 2孙增圻.智能控制理论与技术[M].北京:清华大学出版社,广西科学技术出版社,1992..
  • 3Hagan M T. and Menhaj M. Training feedforward networks with the Marquardt algorithm[ J]. IEEE Tansactions on Neural Networks, 1994, 5(6) :48 - 58,.
  • 4Jang T S. A Study on Non - contact Measurements of Laser-generated Lamb Wave using Fiber Optic sagnac Interferometer and Its Propagation Characteristics[ R ]. NDE for Health Monitoring and Diagnostics, San Diego, 2002.
  • 5Shenton H W. and Zhang L. System Identification Based on the Distribution of Time Between Zero Crossings[J]. Journal of Sound and ibration, 2001(4) :577 - 589.
  • 6JTJ073—1996.公路养护技术规范[S].[S].,..
  • 7陈业开.[D].沈阳:沈阳建筑工程学院土木系,1998.
  • 8Rumelhart D, Meclelland J. Parallel Distributed Processing: Explorations in the Microstructure of Cognition,1986, 1(2) :41 - 49.
  • 9孙雅珍,葛新,赵颖华.沥青路面损伤分析及实验开发[J].沈阳建筑工程学院学报(自然科学版),2004,20(1):14-16. 被引量:3

共引文献12

同被引文献59

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部