摘要
设Z(R)为环R的中心.本文证明了满足下列条件之一的环R必为交换环:(1)R是Koethe半单纯环,且对任意a,b∈R,均存在一个非负整数K=K(a,b)及一个整系数多项式fx(x.y)(它的每一个单项式均含有s=s(a,b)(>1)个x和t=t(,b)(≥K)个y)使得ahK-fx(a,b)∈Z(R);(2)R是Baer半单纯环,且对任意a,b∈R.均存在一个非负整数K=K(a,b)≤n及一整系数多项式fx(x,y)(它的每一个单项式均含有s=s(a,b)(>1)个x和t=t(a,b)(≥K)个y),使得abK-fx(a.b)∈Z(R).其中n是一个固定的正整数,fx(x,y)可随X=(a,b)而变.
in this paper,one proveds that a ring R with centre Z(R) is commutative if it satisfies one of the following conditions: (1 )R is a Koethe semisimple ring,and for arbitrary a,b in R, there exist a non-negative integer K=K(a, b) and a polynomial fx(x,y) (every monomial of which contains s=s(a,b) (>1 )x's and t=t(a,b) (≥K ) y's)such that abK --f x (a,b) ∈ Z(R),fx (x,y) can vary as x= (a,b) varies. (2)R is a Baer semisimple ring,and for arbitrary a,b in R,there exist a non--negative integer K (a,b) (≤n ) and a polynomialfx (x,y) (every monomial of which contains s=s(a,b) (>1 )X's and t=t(a,b) (≥K)y's)such that abK --f x (a,b) ∈ Z (R), where n is a fixed positive integer,fx (x .y) can vary as x= (a,b) varies.
出处
《福建师范大学学报(自然科学版)》
CAS
CSCD
1996年第1期30-33,共4页
Journal of Fujian Normal University:Natural Science Edition
基金
福建省自然科学基金