期刊文献+

稠密散乱数据点多分辨率曲面重构

Multiresolution Surface Reconstruction Method from Dense Scattered Data
下载PDF
导出
摘要 将曲面重构看作是一种信号重构过程,针对大量散乱数据点,借助成熟的三角网格划分和网格化简算法,利用提升小波变换实现曲面重构,可以快速地构造出复杂拓扑结构的Catmull-Clark曲面;给出了小波系数估算方法以及基于网格拓扑结构的局部最优路径搜索算法·通过运行实例证明了文中算法的有效性· Surface reconstruction was considered as a process of signal reconstruction. Catmull-Clark surface is reconstructed with arbitrary topology from dense scattered data, using lifting wavelet under triangulation and mesh simplification algorithms. An algorithm was proposed to estimate the wavelet coefficients, which use a local optimal searching algorithm to improve efficiency. Some examples show that the algorithms work well.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2006年第2期308-313,共6页 Journal of Computer-Aided Design & Computer Graphics
关键词 散乱数据点 多分辨率 曲面重构 小波 scattered data multiresolution surface reconstruction wavelets
  • 相关文献

参考文献14

  • 1Ma Weiyin,Kruth J P.Parameterization of randomly measured points for least squares fitting of B-spline curves and surfaces[J].Computer-Aided Design,1995,27(9):663-675
  • 2Lee Seungyong,Wolberg George,Shin Sung Yong.Scattered data interpolation with multilevel B-splines[J].IEEE Transactions on Visualization and Computer Graphics,1997,3(3):228-244
  • 3Cohen Fernand S,Ibrahim Walid,Pintavirooj Chuchart.Ordering and parameterizing scattered 3D data for B-spline surface approximation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(6):642-648
  • 4Lai J Y,Ueng W D.G2 continuity for multiple surfaces fitting[J].International Journal of Advanced Manufacturing Technology,2001,17(8):575-585
  • 5Catmull E,Clark J.Recursively generated B-spline surfaces on arbitrary topological meshes[J].Computer-Aided Design,1978,10(6):50-55
  • 6Stam J.Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values[C] //Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH,New York,1998:395-404
  • 7Suzuki Hiromasa,Takeuchi Shingo,Kanai Takashi.Subdivision surface fitting to a range of points[OL].[2004-12-21].http://www.cim.pe.u-tokyo.ac.jp/~suzuki/ research/overview/index-E.html
  • 8Halstead M,Kass M,deRose T.Efficient,fair interpolation using Catmull-Clark surfaces[C]//Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH,Anaheim,California,1993:35-44
  • 9Ma Weiyin,Zhao Nailiang.Catmull-Clark surface fitting for reverse engineering application[OL].[2004-12-21].http://www.computer.org/proceedings/ gmp/0562/05620274abs.htm
  • 10Litke Nathan,Levin Adi,Schroder Peter.Fitting subdivision surfaces[C] //Proceedings of Scientific Visualization,San Diego,California,2001:319-324

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部