期刊文献+

基于特征相关性和冗余性分析的机械故障特征选择研究 被引量:7

Research on Mechanical Fault Feature Selection Based on Feature Relevancy and Redundancy Analysis
下载PDF
导出
摘要 从特征相关性和冗余性的定义出发,利用特征与类别间的互信息对特征相关性和冗余性进行了度量,提出了一种基于特征相关性和冗余性分析的特征选择方法。数值仿真和柴油机故障特征选择实验结果表明,新方法可以快速、有效地求得优化特征集,是求解特征选择问题的一个较好方案。 Many features in original fault feature set are irrelevant or redundant to the fault states in mechanical fault diagnosis. These features would decrease diagnosis precision and efficiency. Mutu al information was applied to measure the feature relevancy and redundancy, and a new feature selec tion method based on relevancy and redundancy analysis was proposed. According to the results of data simulation and Diesel engine fault feature selection example, it is proved that this scheme can get optimal feature subset effectively and quickly. The method has good prospects in the fault feature selection.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2006年第4期379-382,共4页 China Mechanical Engineering
基金 国防预研项目(41319040202)
关键词 特征选择 相关性 冗余性 故障诊断 feature selection feature relevancy feature redundancy fault diagnosis
  • 相关文献

参考文献5

  • 1Liu H,Motoda H.Feature Selection for Knowledge Discovery and Data Mining.Boston:Kluwer Academic Publishers,1998
  • 2John G H,Kohavi R,Pfleger K.Irrelevant Features and the Subset Selection Problem.In:Proceedings of the 11th International Conference on Machine Learning.New Brunswick,NJ:Morgan Kaufmann,1994:121~129
  • 3Kohavi R,John G.Wrappers for Feature Subset Selection.Artificial Intelligence,1997,97(1-2):273~324
  • 4Yu L,Liu H.Efficient Feature Selection via Analysis of Relevance and Redundancy.Journal of Machine Learning Research,2004,5:1205~1224
  • 5Bell D A,Wang H.A Formalism for Relevance and Its Application in Feature Subset Selection.Machine Learning,2000,41:175~195

同被引文献64

引证文献7

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部