摘要
设E为实Frchet空间,K为E的锥,本文讨论E上具有扰动的微分方程边界值问题:-x"(t)=f(t,x(t))+g(t,x(t))t∈I=[0,1]x(0)=x(1)=θ正解的存在性,其中f,g∈c[I×K,K]且f(t,θ)=θ,g(t,θ)=θ,t∈I.θ为空间零元素,该文的结果主要应用作者的关于Frchet空间中不动点存在定理而得,推广了它在Banach空间的情形,也推广了[1]的结果。
Let E be a real Frechet space, K a cone of E.In this paper, we discuss the existence of positive solutions Of boundary value problem:-x'(t) = f(t, x(t) )+g(t, x(t)) t∈ I = [0,1]x(0) = x(1) =θ,where f and g are continuous mappings from I×K into K, and f(t, θ) = θ, g(t,θ) =θ for t∈I. Us using .the fixed point theorem in [2], we prove existence theorems of positire solutions of the above Problem in Frechet spaces and generalige the main result of[1].
出处
《南昌大学学报(理科版)》
CAS
1996年第1期41-46,共6页
Journal of Nanchang University(Natural Science)
基金
江西省自然科学基金