期刊文献+

算子及观测数据都非精确情况下一种新的正则参数选择方法 被引量:1

A NEW METHOD OF CHOOSING REGULARIZATION PARAMETER WITH PERTURBED OPERATOR AND NOISY DATA
下载PDF
导出
摘要 在考虑算子及右端项都扰动的情况下,研究求解第一类算子方程的正则参数选择方法.提出了一种新的正则参数选择策略:即修正的广义偏差原则(MGDP)并进行了理论分析,数值试验则进一步证明了该方法的有效性. Many inverse problems in mathematical physics can be considered as an operator equations of the first kind. Essentially, inverse problems are ill-posed, therefore regularization is a must. As is known, the choice of the regularization parameter is a key matter for ensuring proper regularization. The method of iterative choices of regularization parameter with perturbed operator and noisy data for solving operator equations of the first kind is investigated. A modified GDP for finding some reasonable regularization parameters in an efficient manner is proposed. Numerical experiments for integral equations of the first kind are presented to illustrate the efficiency of the proposed algorithms.
出处 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第1期25-31,共7页 Journal of Beijing Normal University(Natural Science)
基金 国家自然科学青年科学基金资助项目(10501051)
关键词 不适定问题 正则化方法 MGDP ill-posed problems regularization MGDP
  • 相关文献

参考文献12

  • 1Engl H W,Hanke M,Neubauer A.Regularization of inverse problems[M].Dordrecht:Kluwer Academic,1996.
  • 2Groetsch C W.Inverse problems in the mathematical sciences braunschweig[M].Wiesbaden:Vieweg,1993.
  • 3Kirsch A.An introduction to the mathematical theory of inverse problems[M].New York:Springer-Verlag,1996.
  • 4Tikhonov A N,Arsenin A.Solutions of ill-posed problerms[M].New York:Wiley,1977.
  • 5Groetsch C W.Inverse problems in the mathematical sciences,braunschweig[M].Wiesbaden:Vieweg,1993.
  • 6Kunisch K,Zou J.Iterative choices of regularization parameters in linear inverse problems[J].Inverse Problems,1998,14:1247.
  • 7Morozov V A.Methods for solving incorrectly posed problems[M].New York:Springer-Verlag,1984.
  • 8Goncharsky A V,Leonov A S,Yagola A G.A generalized discrepancy principle for the cased of operators specified with an error[J].DAN SSSR,1972,203(6):1238.
  • 9Goncharsky A V,Leonov A S,Yagola A G.A generalized discrepancy principle[J].Zh Vychisl Mat iMat Fiz,1973,13(2):294.
  • 10Tikhonov A N,Goncharsky A V,Stepanov V V,et al.Numerical methods for the solution of ill-posed problems[M].Dordrecht:Kluwer,1995.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部