摘要
证明了二阶微分方程两点边值问题u"+P(t)f(u)=0,αu(0)-βu'(0)-βu'(0)=γ'(1)+δu'(1)=0至小存在一个正解,只要f(u)于两个端点u=0和u=+∞处同时是超线性的或者是次线性的.这里所采用的条件容许f(u)具有第一类的间断点,同时也容许p(t)在[0,1]的某些子区间上恒为零.
The second order two-point boundary value problem u' + p(t)f(u) = 0, 0 < t < 1, αu(0) -βu' (0)= γu(1) + δu' (1)= 0,is proved to have at least one positive solution if f(u) is either superlinear or sublinear. The hypotheses adopted here allow f(u) to have discontinuity points of the first kind and p (t ) to equal identically zero on some subintervals of [0, 1].
出处
《吉林大学自然科学学报》
CAS
CSCD
1996年第1期17-20,共4页
Acta Scientiarum Naturalium Universitatis Jilinensis
关键词
两点边值问题
正解
存在性
非线性
微分方程
two-point boundary value problem, positive solution, existence, discontinuity points of the first kind, superlinear and sublinear