期刊文献+

电子邮件分类中的特征选择 被引量:1

Feature Selection in E-mail Classification
下载PDF
导出
摘要 电子邮件是互联网的最重要应用之一,尽管给人们日常工作和生活带来很大便利,但也带来了一种令人讨厌的副产品——垃圾邮件。对邮件进行分类已成为当前的一个研究热点,而如何进行邮件特征选择,是邮件分类中一个基本也是很重要的问题。本文在分析比较几种用于邮件分类的典型特征选择方法基础上,提出一种新的结合了 Mi-tra’s算法和顺序前进搜索法优点的邮件特征选择方法。实验结果表明该方法能够改进邮件分类的准确率,验证了本文方法的有效性和可行性。 E-mail is one of the most popular services of the Internet, E-mail has brought us great convenience in our daily work and life. It has brought us an annoying byproduct Spare. How to classify incoming E-mails and filter spam has attracted much attention. One fundamental yet important issue in E-mail classification is how to select the ap propriate features. Based on the analysis and eomparison of several typical feature seleetion methods for E-mail classification, a new method is proposed, which combines both Mitra's and Sequential Forward Selection. Experimental result shows that the proposed method can improve the precision of E-mail classification.
出处 《计算机科学》 CSCD 北大核心 2006年第2期73-75,共3页 Computer Science
基金 重庆市自然科学基金资助。
关键词 垃圾邮件 邮件分类 特征选择 Spam, E-mail classifying, Feature selection
  • 相关文献

参考文献15

二级参考文献27

  • 1陈彬,洪家荣,王亚东.最优特征子集选择问题[J].计算机学报,1997,20(2):133-138. 被引量:96
  • 2MITRA P, MURTHY C A, PAL S K.Unsupervised feature selection using feature similarity [ J ]. IEEE Trans Pattern Recognition and Machine Intelligence. 2002,3(24):301-312.
  • 3BINS J, DRAPER B A. Feature selection from huge feature sets[A]. Proceedings of the 8th IEEE International Conference on Computer Vision[C]. 2001 (2) : 159-165.
  • 4FERRI F J,PUDIL P. Comparative study of techniques for large-scale feature selection[R]. Pattern Recognition in Practice IV.1994:403-413.
  • 5DRAPER B A, BINS J. ADORE.adaptive object recognition[J]. Videre, 2000,1 (4) : 86-99.
  • 6JARMULAK J,CRAW S. Genetic algorithm for feature selection and weighting [EB/OL]. http://www. scms. rgu. ac. uk/research/kbs/papers/ijcai99-accbr. pdf.
  • 7MALL M. Correlation-based feature selection for discrete and numeric class machine learning [A]. Proceedings of the 17th International Conference on Machine Learning[C]. 2000: 359-366.
  • 8SIKONJA M K, KONONENKO L. An adaptation of Relief for attribute estimation in regression [ A ]. Proceedings of 14th International Conference on Machine Learning[C]. 1997 : 296-304.
  • 9TAIN A,ZONGSKER D. Feature selection:evaluation, application, and small sample performance [ J ]. IEEE Trans Pattern Recognition and Machine Intelligence. 1997,2(19):153-158.
  • 10Wu X,A Heuristic Covering Algorithm for Extension Matrix Approach.Department of Artificial Intelligence,1992年

共引文献135

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部