期刊文献+

多角度不同表情下的人脸识别 被引量:4

Face Recognition under Different Expressions and Multi-views
下载PDF
导出
摘要 多角度及不同表情下的人脸识别是人脸识别领域的一个难题。本文将二维主元素分析法与贝叶斯判据相结合设计了多角度不同表情下的人脸识别算法。首先,利用二维主元素分析法计算人脸的特征矢量空间,并将训练集和测试集中的数据向该特征矢量空间进行投影,然后使用贝叶斯判据进行识别。该方法集中了二维主元素分析法计算简单、速度快及统计分类器识别率高的优点。实验结果显示,该方法计算简单,对具有表情变化及不同角度的人脸的识别率高。 Face recognition under different expressions and multi-views is a difficult problem. A new algorithm for face recognition under different expressions and multi-views is presented in this paper. Firstly, the 2D PCA algorithm is used to compute the eigenvector space of the fact And then, the faces in the training set and testing set are projected to this face spac. Secondly, Bayes rule is used to design the classification designer. The advantages of simple computation and quick speed of two-dimensional PCA and the high recognition rate of statistical classification are combined into the new method. The experimental result shows that the method introduced in this paper has the advantages of simple computation and high recognition rate under different expressions and multi-views.
出处 《计算机科学》 CSCD 北大核心 2006年第2期223-224,229,共3页 Computer Science
基金 国家自然科学基金项目(60172004) 教育部博士点基金项目(20010701003)
关键词 二维PCA 贝叶斯判据 人脸识别 2D PCA, Bayes rule, Face recognition
  • 相关文献

参考文献3

二级参考文献26

  • 1洪子泉,杨静宇.基于奇异值特征和统计模型的人像识别算法[J].计算机研究与发展,1994,31(3):60-65. 被引量:49
  • 2[1]Chellappa R, Wilson C L, Sirohey S. Human and machine recognition of faces: a survey [J]. Proceedings of the IEEE,1995,83(5) :705~741.
  • 3[2]Turk M, Pentland A. Eigenfaces for recognition[J]. Journal of Cognitive Neuroscience, 1991,3(1):71~86.
  • 4[3]Pentland A, Moghaddam B, Starner T. View-based and modular eigenspaces for face recognition[A]. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition 1994 [C], Seattle, WA, USA, 1994:84~91.
  • 5[4]Gao Y, Leung M K H, Wang W et al. Fast face identification under varying pose from a single 2-D model view [J].Proceedings of the IEEE, Vision, Image and Signal Processing,2001,148(4): 248~253.
  • 6[5]Lien J J, Kanade T, Cohn J F et al. Automated facial expression recognition based on FACS action units[A]. In: Proceedings of Third IEEE International Conference on Automatic Face and Gesture Recognition[C], Nara, Japan. 1998:390~395.
  • 7[6]Yacoob Y, Lam H, Davis L S. Recognizing faces showing expressions [A ]. In: International Workshop on Automatic Face-and Gesture-Recognition[C], Zurich, 1995: 278~283.
  • 8[7]Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs.Fisherfaces: Recognition using class specific linear projection [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1997,19(7) : 711~720.
  • 9[8]Tekalp A M. Digital video processing[M]. Englewood Cliffs,NJ: Published by Prentice Hall, Inc., a Simon & Schuster Company, 1995:95~116.
  • 10[9]Carnegie Mellon University face expression database[DB/OL]:http ://amp. ece. cmu. edu/downloads. btm.

共引文献47

同被引文献27

  • 1王昱,阎苹,丁明跃.一个快速人脸识别系统[J].计算机与数字工程,2004,32(3):16-18. 被引量:3
  • 2徐勇,张重阳,杨静宇.基于主分量特征与独立分量特征的人脸识别实验[J].计算机工程与设计,2005,26(5):1155-1157. 被引量:9
  • 3陈伏兵,陈秀宏,张生亮,杨静宇.基于模块2DPCA的人脸识别方法[J].中国图象图形学报,2006,11(4):580-585. 被引量:61
  • 4甘俊英,李春芝.基于小波变换的二维独立元在人脸识别中应用[J].系统仿真学报,2007,19(3):612-615. 被引量:15
  • 5韩柯,朱秀昌.基于二维PCA的人脸识别方法研究[J].杭州电子科技大学学报(自然科学版),2007,27(1):69-72. 被引量:7
  • 6YANG J, ZHANG D. Two - Dimensional PCA : A New Approach to Appearance - Based Face Representation and Recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2004,26 ( 1 ) : 131 - 137.
  • 7Shi - Hong Jeng. Facial feature detection using geometrical face model: an efficient approach[ J]. Patten recognition, 1998, 31 (3) : 237 - 282.
  • 8Yang, M. H, Ahuja. N, Kricgman. D. Face recognition using kernel eigenfaces. [ J ]. International Conference on Image Processing ,2000 ,1: 37 -40.
  • 9Jian Yang, Zhang. D, Frangi. A. Fetal. Two - dimentional PCA: a new approach to appearance - based face representation and recognition[J]. Pattern Analysis and Machine Intelligence, 2004, 26 ( 1 ) : 131 - 137.
  • 10GUO Y F,SHU T T,YANG J Y.Feature Extraction Method Based on the Generalized Fisher Discriminant Criterionand Face Recognition[J].Pattern Analysis&Application,2001,4(1):61-66.

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部