期刊文献+

对单训练样本的人脸识别问题的研究 被引量:13

Some Researches for Face Recognition with One Training Image per Person
下载PDF
导出
摘要 现在许多人脸识别算法都是在假定每个人提供了多幅训练样本的情况下展开的,对每人只有一幅训练图像的识别问题研究得很少,而实际中往往每人只提供了一幅图像。本文对这一问题进行了研究,给出了一些生成虚拟训练样本的方法;提出了基于类间散度最大的二维主分量分析方法,在 ORL 库上用单训练样本取得了75.28%的识别结果。 Nowadays many algorithms for face recognition are under the postulate that each person has many training images. There are few study with the one training sample per person. While each person may only provide one registered photo in most cases. We solve this problem by add virtual images generating from the given training image, and study the differences of the recognition rates between PCA, Fisherface, (PC)^2A and Two Dimension PCA(2DPCA). In this paper, a new 2DPCA which is based on the Maximum Margin Criterion is proposed. The average recognition rate on ORL face-databases achieves 75.28% only using one training image per person.
出处 《计算机科学》 CSCD 北大核心 2006年第2期225-229,共5页 Computer Science
基金 国家自然科学资金60472060项目
关键词 主分量分析(PCA) 二维主分量分析(2DPCA) FISHERFACE 虚拟样本 PCA, 2DPCA, Fisherfaee, Virtual samples
  • 相关文献

参考文献8

  • 1Yang Jian,Zhang D,Yang Jing-Yu,et al.Two-Dimensional PCA:A New Approach to Appearance-Based Face Representation and Recognition [J].IEEE transaction on Pattern Analysis and Machine Intelligence,2004,26 (1)
  • 2Belhumeur P N,et al.Eigenfaces vs.Fisherfaces:Recognition Using Class Specific Linear Projection [J].IEEE Transactions on PAMI,1997,19(7)
  • 3金忠,杨静宇,陆建峰.一种具有统计不相关性的最佳鉴别矢量集[J].计算机学报,1999,22(10):1105-1108. 被引量:51
  • 4Shan Shiguang,et al.Extended Fisherface for Face Recognition from a Single Example Image Per Person [C].IEEE International Symposium on Circuits and Systems,2002,2
  • 5Wu Jianxin,Zhou Zhi-Hua.Face recognition with one training image per person [J].Pattern Recognition Letters,2002,23:1711~1719
  • 6Chen Songcan,Zhang Daoqiang,Zhou Zhi-Hua.Enhanced (PC)^2 A for face recognition with one training image per person [J].Pattern Recognition Letters,2004,25:1173~ 1181
  • 7Huang Jian,Yuen Pong C,Chen Wen-Sheng,et al.Componentbased LDA Method for Face Recognition with One Training Sample [C].Proceedings of the IEEE International Workshop on Analysis and Modeling of Faces and Gestures (AMFG'03)
  • 8杨琼,丁晓青.对称主分量分析及其在人脸识别中的应用[J].计算机学报,2003,26(9):1146-1151. 被引量:35

二级参考文献9

  • 1Pentland A, Choudbury T. Face recognition for smart environ-ment. Computer, 2000, 33(2):50~55.
  • 2Chellappa R, Wilson C L, Sirohey S. Human and machine rec-ognition of faces: A survey. Proceedings of the IEEE, 1995, 83(5) :705~739.
  • 3Zabrodsky H, Peleg S, Avnir D. Symmetry as a continuous fea-ture. IEEE Transactions on Pattern Analysis and Machine Intel-ligence, 1995, 17(12):1154~1166.
  • 4Reisfeld D, Yeshurun Y. Robust detection of facial features by.generalized symmetry. In: Proceedings of the 1 lth IAPR Inter-national Conference on Computer Vision and Applications,1992, 1(A):117~120.
  • 5Kirby M, Sirovich L. Application of the Karhunen-Lo~ve proce-dure for the characterization of human faces. IEEE Transactionson Pattern Analysis and Machine Intelligence, 1990, 12 ( 1 ) : 103~108.
  • 6Etemad K, Chellappa R. Face recognition using discriminanteigenvector. In: Proceedings of IEEE International Conferenceon Acoustics, Speech, and Signal Processing, 1996, (4):2148.~2151.
  • 7Turk M, Pentland A. Eigenface for recognition. Journal of Cog-nitive Neuroscience, 1991, 3 ( 1 ) : 72 ~ 86.
  • 8Moghaddam B, Pentland A. Probabilistic visual learning for ob-ject representation. IEEE Transactions on Pattern Analysis andMachine Intelligence, 1997, 19(7):696~710.
  • 9Phillips P J, Weehsler H, Huang J, Rauss P. The FERET da-tabase and evaluation proeedure for faee reeognition algorithms.Journal of Image and Vision Computing, 1998, 16 (5) : 295297.

共引文献84

同被引文献109

引证文献13

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部