摘要
In this paper a Fiber Bragg Grating (FBG) Strain Rosette is designed, developed and tested. Traditional FBGs measure strain in only one direction. However, in-plane strain at a point consists of two normal strains and one shear strain. Hence a FBG strain rosette needs to be designed. The sensing principle of FBGs as a strain and temperature sensor and fundamental principles of strain transformation and strain gage rosettes are discussed.FBG strain rosettes are fabricated and embedded in two materials namely, Silicon Gel RTV 146-9 and Glass Fiber Composite Laminates. Experiments were conducted on the FBG strain rosette structures that were embedded in Silicon Gel (RTV 146-9). Initial findings from the experiments as well as preferred embedding material are presented.
In this paper a Fiber Bragg Grating (FBG) Strain Rosette is designed, developed and tested. Traditional FBGs measure strain in only one direction. However, in-plane strain at a point consists of two normal strains and one shear strain. Hence a FBG strain rosette needs to be designed. The sensing principle of FBGs as a strain and temperature sensor and fundamental principles of strain transformation and strain gage rosettes are discussed. FBG strain rosettes are fabricated and embedded in two materials namely, Silicon Gel RTV 146-9 and Glass Fiber Composite Laminates. Experiments were conducted on the FBG strain rosette structures that were embedded in Silicon Gel (RTV 146-9). Initial findings from the experiments as well as preferred embedding material are presented.
出处
《实验力学》
CSCD
北大核心
2006年第1期77-86,共10页
Journal of Experimental Mechanics
关键词
光纤布拉格光栅
布拉格波长
应变转化
应变片花
玻璃纤维
Fiber-Bragg Gratings
Bragg wavelength
Fiber-Bragg Grating Strain Sensor
strain transformation
Strain Rosette
Glass Fiber Composite Laminates