摘要
The mechanism of a cycloaddition reaction between singlet methylidenesilene and ethylene has been investigated with MP2/6-31G^* and B3LYP/6-31G^* methods, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. Energies of the involved conformers were calculated by CCSD(T)//MP2/6-31G* and CCSD(T)//B3LYP/6-31 G* methods, respectively. The results show that the dominant reaction pathway of the cycloaddition reaction is that a complex intermediate is firstly formed between the two reactants through a barrier-free exothermic reaction of 13.3 kJ/mol, and the complex is then isomefized to a four-membered ring product P2,1 via a transition state TS2.1 with a barrier of 32.0 kJ/mol.
The mechanism of a cycloaddition reaction between singlet methylidenesilene and ethylene has been investigated with MP2/6-31G^* and B3LYP/6-31G^* methods, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. Energies of the involved conformers were calculated by CCSD(T)//MP2/6-31G* and CCSD(T)//B3LYP/6-31 G* methods, respectively. The results show that the dominant reaction pathway of the cycloaddition reaction is that a complex intermediate is firstly formed between the two reactants through a barrier-free exothermic reaction of 13.3 kJ/mol, and the complex is then isomefized to a four-membered ring product P2,1 via a transition state TS2.1 with a barrier of 32.0 kJ/mol.
基金
Project supported by the Natural Science Foundation of Shandong Province of China (No. Y2002B07).