摘要
The electrochemical behavior of monomolybdenum-substituted Keggin-type polyoxometalates [XW11MoO40]^n- (X=P, Si, Ge with n=3, 4) was studied in aqueous and N,N-dimethylformamide (DMF) solution. These anionic clusters showed different electrochemical behaviors in two kinds of media. The initial potentials of [XW11MoO40]^n- in DMF were more negative than those in aqueous solution, showing a lower oxidation ability of [XW11MoO40]^n- in DMF. The investigation results suggested that the redox properties of polyoxometalates be tuned by the substitutions of Mo for W and by replacing aqueous solution with organic solvent, which provided valuable information to rationally choose polyoxometalates (POM) in preparation of POM-based organic/inorganic hybrid materials.
The electrochemical behavior of monomolybdenum-substituted Keggin-type polyoxometalates [XW11MoO40]^n- (X=P, Si, Ge with n=3, 4) was studied in aqueous and N,N-dimethylformamide (DMF) solution. These anionic clusters showed different electrochemical behaviors in two kinds of media. The initial potentials of [XW11MoO40]^n- in DMF were more negative than those in aqueous solution, showing a lower oxidation ability of [XW11MoO40]^n- in DMF. The investigation results suggested that the redox properties of polyoxometalates be tuned by the substitutions of Mo for W and by replacing aqueous solution with organic solvent, which provided valuable information to rationally choose polyoxometalates (POM) in preparation of POM-based organic/inorganic hybrid materials.
基金
Project supported by the National Natural Science Foundation of China (No. 20371010), the State Key Laboratory for Structural Chemistry of Unstable and Stable Species at Peking University (No. 03-12) and the Natural Science Foundation of Jilin Technology 0ffice of China (No. 20030512-1).