摘要
Pless提出了由GF(4)上的(6,3,4)线性分组码构造二元(24,12,8)Golay码的投影方法,并据此给出了二元Golay码的快速译码算法,Vardy和Be'ery又利用四元(6,3,4)码的码字与二元(24,12,8)Golay码的码字间的投影关系提出了到目前为止最有效的Golsy码的最大似然软判决译码算法.下文进一步推广了Pless提出的投影方法,给出了由四元(n,k,d)线性分组码构造的二元(4n,n+2k≥min(n,2d,8)线性分组码,并以(28,15,6)码的译码为例说明这类码的译码过程.
Plass presented a projecting method for constructing a binary (24, 12, 8) Golay code fromthe (6, 3, 4) linear code over GF(4), and so proposed a fact decoding algorithm for the Golaycode. Vardy and Be'ery gave, to the best of our knowledge, the most efficient maximum likelihood decoding algorithm for the code by utilizing the projecting relation between the codewordsof the quaternary (6, 3, 4) code and those of the binary (24, 12, 8) Golay code. Here, we further generalize the projecting method propaned by Pless, and give a binary (4n, n+2k, ≥min(n, 2d, 8)) code from a quaternary (n, k, d ) code. Finally, decoding procedure of the codes isillustrated by that of the binary (28, 15, 6) block code.
出处
《西安电子科技大学学报》
EI
CAS
CSCD
北大核心
1996年第1期42-47,共6页
Journal of Xidian University
基金
国家自然科学基金
关键词
线性分组码
译码
信道
s: maximum likelihood decoding
linear block code
projecting relation