期刊文献+

青藏高原天然气水合物的形成与多年冻土的关系 被引量:30

Relationship between permafrost and gas hydrates on Qinghai-Tibet Plateau.
下载PDF
导出
摘要 天然气水合物是一种新型清洁能源,赋存在多年冻土区和海洋沉积物等低温高压环境中。青藏高原多年冻土面积占高原总面积的一半以上,是可能的天然气水合物赋存区。根据青藏高原多年冻土条件和天然气水合物形成的热力学条件,讨论了多年冻土地温梯度、冻土厚度与天然气水合物形成的热力学条件之间的关系和青藏高原存在天然气水合物的可能性。结果表明,青藏高原多年冻土区基本具备形成天然气水合物的热力学条件,最适宜的热力学条件是多年冻土地温梯度接近或略大于多年冻土底板附近融土的地温梯度,且融土地温梯度越小,越容易形成天然气水合物。估算得到天然气水合物最浅的顶界埋深为74m左右,最深的底界埋深达上千米。 Gas hydrates are a kind of new clean energy. They are found in low-temperature and high-pressure environments in permafrost and marine sediments. The permafrost on Qinghai-Tibet Plateau, which accounts for about half of the total area of the plateau, may be a potential region of gas hydrates. According to the permafrost characteristics of the plateau and thermodynamic conditions of formation of gas hydrates, the relationships of the permafrost thermal gradients and thickness with the thermodynamic conditions of formation of gas hydrates are discussed. In addition, the possibility of the existence of gas hydrates on Qinghai-Tibet Plateau is also preliminarily analyzed. The results show that the permafrost regions on the plateau have basic thermodynamics conditions for formation of gas hydrates. The best thermodynamics condition is that the thermal gradient of permafrost is close to or slightly higher than that of thawed soils near the permafrost bottom, and the lower the thermal gradient of thawed soils, the more easily gas hydrates will be formed. It is estimated that the shallowest burial depth of the top of the gas hydrate layer is -74 m and that the deepest bottom of the layer is up to one thousand meters.
出处 《地质通报》 CAS CSCD 北大核心 2006年第1期29-33,共5页 Geological Bulletin of China
基金 国家自然科学基金项目(40471024) 中国科学院寒区旱区环境与工程研究所创新项目资助。
关键词 青藏高原 多年冻土 天然气水合物 地温梯度 Qinghai-Tibet Plateau permafrost gas hydrate thermal gradient
  • 相关文献

参考文献22

  • 1MacDonald G J. Role of methane chthrates in past and future climates[J]. Climatic Change, 1990,16(2) :247-281.
  • 2Paull C K, Usseler W III, Dillion W P. Is the extent of glaciation limited by marine gas hydrate? [J]. Geophysical Research Letter, 1991,18(4) :432-434.
  • 3Neue H. Methabe emission from rice fields: Wetland rice fields may make a major contribution to global warming[J]. Bio Science,1993,43 (7) : 466-473.
  • 4Collett T S, Ginburg G D. Gas hydrates in the Messoyakha gas field of the west Siberian basic-A extermination of the geologic evidence[A]. In: Proceedings of 7th International Offshore and Polar Engineering Conference[C]. 1997.96-103.
  • 5Dallimore S IL, U chida T, Collett T S. Scientific results from JAPEX/JNOC/GSC Mallik 2L 238 gas hydrate research well,Mackenzie Delta, Northwest Territories Canada[J]. Bull. Geol.Surv. Canada, 2002.544.
  • 6Devidson D W, E1-Defrawy M K, Fuglem M O. Natural gas hydrates in Northern Canada[A]. In: proceedings of 3th International Conference on Permafrost (Volume 1)[C]. Edmonton, Alberta, Canada, 1978.938-943.
  • 7Collett T S. Natural gas hydrate of the Prudhoe Bay and Kuparuk river area, North Slope, Alaska[J]. American Association of Petroleum Geologists Bulletin, 1993,77 (5) :793-815.
  • 8黄朋,潘桂棠,王立全,胡宁静.青藏高原天然气水合物资源预测[J].地质通报,2002,21(11):794-798. 被引量:68
  • 9徐学祖,程国栋,俞祁浩.青藏高原多年冻土区天然气水合物的研究前景和建议[J].地球科学进展,1999,14(2):201-204. 被引量:96
  • 10张立新,徐学祖,马巍.青藏高原多年冻土与天然气水合物[J].天然气地球科学,2001,12(1):22-26. 被引量:67

二级参考文献59

共引文献422

同被引文献410

引证文献30

二级引证文献259

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部