摘要
In this study, Virtual Reality (VR)-based plastic injection molding training system (VPIMTS), which can be modeled as an integrated system with a task planning module, an intelligent instruction module, a simulation module, and virtual envi-ronment (VE) module, was developed. Presented in this paper are an architecture of VPIMTS, a practical knowledge modelling approach for modelling the training scenarios of the system by using Petri nets formalism and key techniques (FEM, injection molding procedure modelling) which have been developed independently. The utilization of the Petri net model realized the environment where the trainee can behave freely, and also made it possible to equip the system with the function of showing the next action of the trainee whenever he wants. The overall system is a powerful approach for highly improving the trainee’s comprehension and injection molding study-efficiency by building digital, intelligent, knowledgeable, and visual aids.
In this study, Virtual Reality (VR)-based plastic injection molding training system (VPIMTS), which can be modeled as an integrated system with a task planning module, an intelligent instruction module, a simulation module, and virtual environment (VE) module, was developed. Presented in this paper are an architecture of VPIMTS, a practical knowledge modelling approach for modelling the training scenarios of the system by using Petri nets formalism and key techniques (FEM, injection molding procedure modelling) which have been developed independently. The utilization of the Petri net model realized the environment where the trainee can behave freely, and also made it possible to equip the system with the function of showing the next action of the trainee whenever he wants. The overall system is a powerful approach for highly improving the trainee's comprehension and injection molding study-efficiency by building digital, intelligent, knowledgeable, and visual aids.