期刊文献+

带随机过程的随机规划问题最优解过程的平稳性与马氏性

STATIONARY AND MARKOV PROPERTIES OF OPTIMAL SOLUTIONS OF STOCHASTIC PROGRAMMING PROBLEM WITH RANDOM PROCESSES
下载PDF
导出
摘要 证明了带随机过程的随机规划问题其最优解集中至少存在一列最优解均为可测的随机过程;且如果问题中的随机过程具有平稳性与马氏性,则此时问题的最优解过程亦具有相应的特性。 It is proved that there exist at least a countable number of optimal solutions in the optimal solution set of general stochastic programming problem with random processes, these optimal solutions are measurable random processes. Based on this result, it is then proved that the relative optimal solutions processes are stationary, Markovian stochastic processes ifthe stochastic processes in the discussed problem have the same properties.
作者 陈志平 高勇
机构地区 西安交通大学
出处 《纯粹数学与应用数学》 CSCD 1996年第1期88-92,共5页 Pure and Applied Mathematics
关键词 随机规划 随机过程 平稳性 马氏性 最优解过程 stochastic programming random processes measurability stationary and Markov properties
  • 相关文献

参考文献2

  • 1王梓坤.随机过程论[M]科学出版社,1965.
  • 2Raj Jagannathan. Linear programming with stochastic processes as parameters as applied to production planning[J] 1991,Annals of Operations Research(1):107~114

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部