摘要
设G是个图,|V(G)=n|对G上的任一个标号f:V(G)→{1,…,n}记,且当j≠i时,G中有边以f(-1)(j)及f(-1)(i)为两端点}).称P(G)=min{P(f):f是G上的标号}为图G的轮廓.对以W表示G中W的边界.本文证明:i)若G是凝聚图,f及f是G上一对互逆标号,则P(G)=P(f)的充要条件是f为凝聚标号,且此时若G,H均是凝聚图,则存在阶梯标号。使得路、回、完全留之间的下列乘积图也是凝聚图。
Let G be a graph,and |V(G)| = n. For any labeling f: V(G) → {1,…,n}on G, write then f-1 (f) and f-1(i) are adjacent in G}). Define P(G)= min{p(f): f is a labeling on G} and call P(G) the profile of graph G.For W C V(G), denote the boundary of W in G by W. In this paper we prove: 1) If G is a condensable graph, and f and f are mutually inverse labelings on G, then P(G)  ̄ p(f) if andonly if f is a condensable labeling. And in this case If both G and H are condensable grabs, then there is a staircase labeling ψ such that P(G ×H)= p(ψ);iii) The following products involving paths, cycles and complete graphs are also condensable graphs, and their profiles are P(Pm ×Kn) = (m-1/2)n2-n/2, P(Cm × Km) =(2m-3)n2 (m >4),P(Cm × Cn) = [(2m -2n/3 + 1/2)n2-16n/3 + 3-min {1,m--n} (m > n >2> 3); iv)P(C3 × Km) = [(13n2-2n)/4.
出处
《系统科学与数学》
CSCD
北大核心
1996年第2期141-148,共8页
Journal of Systems Science and Mathematical Sciences
关键词
顶点标号
轮廓
凝聚图
图
完全图
乘积图
Labeling of venices
profile of graph
condensable graph
product of graphs
path
cycle
complete graph