期刊文献+

一种基于网格编码量化的高光谱图像无损压缩方法 被引量:4

A Lossless Hyperspectral Image Compression Method Based on Trellis-coded Quantization
下载PDF
导出
摘要 由于遥感图像的数据量非常庞大,给有限的存储空间和传输带宽带来很大的压力,同时,由于高光谱图像获取代价昂贵,具有广泛的应用领域,且压缩时一般不能丢失任何信息,即要求无损压缩,因此没有有效的压缩方法,高光谱图像的普及应用将受到极大的限制。网格编码量化(TCQ)借鉴了网格编码调制(TCM)中信号集合扩展、信号集合划分和网格状态转移的思想,其虽具有良好的均方误差(MSE)性能,而且计算复杂度适中,但目前TCQ主要被应用于图像的有损压缩,为了对高光谱图像进行有效的无损压缩,通过将TCQ引入高光谱图像的无损压缩,并根据高光谱图像的特点,提出了一种基于小波变换和TCQ的高光谱图像无损压缩方法。实验结果表明,与JPEG2000和JPEG-LS中无损压缩算法相比,该算法对高光谱图像具有更好的压缩性能。 Huge amounts of data of hyperspectral images have become a great challenge to data storage and transmission. Due to the special way to obtain hyperspectral images, they are costly, but this kind of image can be used extensively in the meantime, Any information shouldn't be lost during compression, so an efficient lossless compression method seems to be essential. Without an efficient compression scheme, the application of hyperspcctral images will be restricted. Trellis coded quantization (TCQ) inherits ideas from trellis coded modulation (TCM) the expanded signal set, set partitioning and trellis state transition. The mean squared error (MSE) performance of TCQ is excellent with modest computing complexity. At present TCQ is mainly used for lossy image compression. In this paper, we aim to develop TCQ scheme to compress hyperspectral images losslessly and find a new approach yielding higher lossless compression ratio. We take advantage of the characteristics of hyperspectral data for compression. A scheme utilizing wavelet transformation and TCQ is presented. Compared with the result of JPEG2000 and JPEG-LS, experiments show that the method presented in this paper has better performance.
出处 《中国图象图形学报》 CSCD 北大核心 2006年第1期123-127,共5页 Journal of Image and Graphics
基金 国家自然科学基金项目(60472036 90304001) 北京市自然科学基金项目(4032008 4052007) 北京市教委科技发展计划重点项目(KZ200310005004 KM200410005022)
关键词 高光谱图像 无损压缩 小波变换 网格编码量化 hyperspectral imagery, lossless compression, wavelet transformation, trellis coded quantization(TCQ)
  • 相关文献

参考文献9

  • 1张晓玲,沈兰荪.高光谱图像的无损压缩研究进展[J].测控技术,2004,23(5):23-27. 被引量:19
  • 2Marcellin M W,Fischer T R.Trellis coded quantization of memoryless and Gaussian-Markov sources[ J].IEEE Transactions on Communications,1990,38(1):82 ~93.
  • 3Joshi R L,Crump V J,Fischer T R.Image subband coding using arithmetic coded trellis coded quantization[ J].IEEE Transactions on Circuits and Systems for Video Technology,1995,5 (6):515 ~ 523.
  • 4Ungerboeck G.Channel coding with multilevel/phase signals [ J].IEEE Transactions on Information Theory,1982,28(1):55 ~ 67.
  • 5Marcellin M W.On entropy-constrained trellis coded quantization[J].IEEE Transactions on Communications,1994,42 (1):14 ~ 16.
  • 6Witten I H,Neal R M,Cleary J G.Arithmetic coding for data compression[ J].Communications of the ACM,1987,30 (6):520 ~ 540.
  • 7Fowler James E.Qcc Pack [ CP/OL ].Website:http://qccpack.sourceforge.net.
  • 8Touradj Ebrahimi.The JPEG2000 still image coding system:an overview[ J].IEEE Transactions on Consumer Electronics,2000,46(4):1103 ~ 1127.
  • 9Weinberger Marcelo J,Seroussi Gadiel,Sapiro Guillermo.The LOCO-I lossless image compression algorithm:Principles and standardization into JPEG-LS [ J ].IEEE Transactions on Image Processing,2000,9 (8):1309 ~ 1324.

二级参考文献41

  • 1Aiazzi B,Alba P,Alparone L,et al.Reversible compression of hyper-spectral imagery through inter-band fuzzy prediction and context coding[A].Geoscience and Remote Sensing Symposium Proceedings,1998.IGARSS'98.IEEE,1998:2 685-2 687.
  • 2Aiazzi B,Alba P,Alparone L,et al.A distributed implementation of fuzzy clustering and switching of linear regression models for lossless compression of imagery and 3D data[A].Multimedia Signal Processing, 1998 IEEE Second Workshop on,1998:382-387.
  • 3Aiazzi B,Alba P S,Alparone L,et al.Reversible inter-frame compression of multispectral images based on a previous-closest-neighbor prediction[A].Geoscience and Remote Sensing Symposium,1996.IGARSS '96.Remote Sensing for a Sustainable Future[C].Internation
  • 4Aiazzi B,Alba P S,Alparone L,et al.Reversible compression of mutispectral imagery based on an enhanced inter-band JPEG prediction[A].Geoscience and Remote Sensing,1997.IGARSS'97.Remote Sensing-A Scientific Vision for Sustainable Development[C].IEEE Intern
  • 5Baizert P,Pickering M T,Ryan M J.Compression of hyperspectral data by spatial/spectral discrete cosine transform[A].Geoscience and Remote Sensing Symposium,2001. IGARSS'01.IEEE 2001 International,2001,4:1 859-1 861.
  • 6Qian Shen-En,Hollinger A B,Hamiaux Y.Study of real-time lossless data compression for hyperspectral imagery[A].Geoscience and Remote Sensing Symposium,1999.IGARSS'99.Proceedings.IEEE 1999 International,1999,4:2 038-2 042.
  • 7Tate S R.Band ordering in lossless compression of multispectral images[A].Data Compression Conference,1994.DCC '94.Proceedings,1994:311-320.
  • 8Tate S R.Band ordering in lossless compression of multispectral images[J].IEEE Transactions on Computers,1997,46(4):477 -483.
  • 9Arnavut Z.Permutations and prediction for lossless compression of multispectral TM images[J].IEEE Transactions on Geoscience and Remote Sensing,1998,36(3):999-1 003.
  • 10Arnavut Z.A remapping technique based on permutations for lossless compression of multispectral images[A].Data Compression Conference,1997.DCC '97.Proceedings,1997-03:407-416.

共引文献18

同被引文献54

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部