期刊文献+

一种基于椭圆曲线密码的可检错数据签名加密方案

An error-detectable data-signcryption scheme based on elliptic curve cryptosystem
下载PDF
导出
摘要 本文基于椭圆曲线密码和对称密码体制,提出了一种融合数据加密,签名认证和数据检错功能新方案,该数据签名加密方案可有效防止中间人攻击,有效的提高数据传送效率. Based on Elliptic Curve Cryptosystem and symmetrical cryptosystem, this paper proposes a new scheme, which includes the functions of data encryption, digital signature and error - dection, and can effectively stop the attack -in -middle. This scheme saves computational cost and communication overhead.
出处 《西南民族大学学报(自然科学版)》 CAS 2006年第1期199-201,共3页 Journal of Southwest Minzu University(Natural Science Edition)
基金 湖南省自然科学科学基金(05JJ03141)
关键词 椭圆曲线密码 签名加密 中间人攻击 检错 Elliptic Curve Cryptosystem signcryption attack - in - middle error - detection.
  • 相关文献

参考文献9

二级参考文献30

  • 1M Burmester,Y Desmedt,H Doi et al.A structured E1Gamal-type multisignature scheme[C].In:Proceedings of Third International Workshop on Practice and Theory in Public Key Cryptosystem(PKC 2000),2000:466~483
  • 2F Hess.Exponent group signature schemes and efficient identity based signature schemes based on pairings.http://eprint.iacr.org/2002/012
  • 3K Itakura,K Nakamura. A public-key crypto-system suitable for digital multisignature[J].NEC Research and Development,1983;71:1~8
  • 4C Y Lin,T C Wu,F Zhang. A structured multisignature scheme from the gap Diffie-Hellman group.http://eprint.iacr.org/2003/090
  • 5S Micali,K Ohta,L Reyzin. Accountable-subgroup multisignatures[C].In:ACM Conference on Computer and Communications Security 2001(CCS 2001) ,2001:245~254
  • 6K Ohta,T Okamoto. Multi-signature scheme secure against active insider attacks[C].In:IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences, 1999;E82-A(1) :21~31
  • 7K G Paterson. ID-based signatures from pairings on elliptic curves.http://eprint .iacr.org/2003/004.
  • 8A Shamir. Identity-based cryptosystems and signature schemes[C].In:Proceedings of Crypto′84,LNCS 196,1985:47~53
  • 9[1]Whitfield Diffie,Martin Hellman. New Direction in Cryptography[J].IEEE Tran. Inform. Theroy, 1976;22(6) :644-654
  • 10[2]Neal Koblitz.The State of Elliptic Curve Cryptography[J].Designs、Codes and Cryptography,2000; 19:173-193

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部