期刊文献+

关于广义Lucas数列中的平方数与2倍平方数 被引量:1

The Square Terem x^2 and 2x^2 of Generalized Lucas Sequences
下载PDF
导出
摘要 设数列{Uk}和{Vk}是关于参数为P,Q的广义Lucas数列。文章确定了当2|P,且Q=-1时广义Lucas数列中的平方数与2倍平方数。 Let P,Q∈N, and let {Uk }, {Vk} be the generalized Lucas sequences with parameters P and Q. In this paper, we find all positive integers k, such that Uk, Vk, 2Uk, or 2Vk is a square.
作者 杨仕椿
出处 《云南师范大学学报(自然科学版)》 2006年第2期1-4,共4页 Journal of Yunnan Normal University:Natural Sciences Edition
基金 国家自然科学基金资助(10271104) 四川省教育厅自然科学研究基金资助(2004B025)
关键词 广义Lucas数列 平方数 丢番图方程 generalized Lucas sequences square terms diuphantion equation solution
  • 相关文献

参考文献20

  • 1Lehmer D.L.,An extended theory of Lucas' functions[J].Ann.Math.,1930,31:419-448.
  • 2Alfred U.On square Lucas numbers[J].Fibonacci Quart.,1964,2:11-12.
  • 3Burr S.A.,On the occurrence of squares in Lucas sequences[J].Amer.Math.Soc.Notices,1963,10:11-12.
  • 4Cohn J.H.E.,On square Fibonacci numbers[J].J.London Math.Soc.,1964,39:537-541.
  • 5Wyler O.,Solution of problem 5080[J].AmerMath.Monthly,1964,71:220-222.
  • 6Ko C.,Sun Q.,On square Fibonacci numbers[J].J.Sichuan University,1965,11(2):11-18.
  • 7Ljunggren W.,On the Diophantine equation Ax4-By2=C(C=1,4)[J].Math.Scand.,1967,21:149-156.
  • 8Ribenboim P.,McDaniel W.L.The square Terms in Lucas Sequence[J].J.Number Theory,1996,58:104-123.
  • 9袁平之.Lehmer序列中的平方数[J].数学学报(中文版),2003,46(5):897-902. 被引量:3
  • 10Rotkiewicz A.,Applications of Jacobis symbol to Lehmers numbers[J].Acta Arith.,1983,62:163-187.

二级参考文献14

  • 1Cohn J H E, On square Fibonacci numbers, J London Math. Soc., 1964. 39: 537-541.
  • 2Wyler O, Solution of problem 5080, Amer. Math. Monthlu. 1964. 71:220-222.
  • 3Ko C, Sun Q, On square Fiboacci numbers, J Sichuan University,1965m11(2):11-18 (in Chinese).
  • 4Ljunggren W., On the diophantine equation Ax^4 - By^2=C(C=1,4),Math.Scand.,1967,21(149-156.
  • 5Rotkiewicz A, Applications of Jacobi's symbol to Lehmer's nutmbers,Acta Arith., 1983,62:163-187.
  • 6Ribenboim P,McDaniel W L,The square Terms in Lucas Sequences, J Number Theory,1996,58:104-123.
  • 7Shorey T N, Tijdeman R., Exponential diophantine equations,Cambridge:Cambridge Univ.Preas,1986.
  • 8Ribenboim P, The Book of Prime Number Records, New York: Springer-Verlag. 1989.
  • 9McDaniel W L, The g c d in Lucas sequences and Lehmer number sequences, Fibonacci Quart., 1991, 29:24-29.
  • 10Alfred U., On square Lucas numbers, Fibonacci Quart., 1964. 2. 11-12.

共引文献4

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部