期刊文献+

基于混合高斯模型的电子邮件多过滤器融合方法 被引量:12

Combining Multiple Email Filters of Na?ve Bayes Based on GMM
下载PDF
导出
摘要 本文提出了一种基于混合高斯模型(GMM)的多贝叶斯过滤器融合方法,并成功应用于电子邮件过滤.该方法使用多元统计分析方法对多个过滤器在训练例上的过滤表现矩阵进行降维和除噪,得到训练数据及各过滤器的分布;然后,从这一分布中学习出对邮件进行类别判定的GMM.GMM根据期望代价最小准则进行过滤,避免将正常邮件判定为垃圾.实验结果表明,本文方法具有较好的过滤性能,且对于特征提取率的敏感度低. An algorithm combining multiple Naive Bayesian (NB) filters based on GMM is presented, which has been successfully applied to e-mail filtering. The method uses the multiple variates statistics analysis to model the relationship between the training data set and their classification by a collection of NB filters. Then a GMM can be learned from the resulting representation. The GMM filters previously unseen e-mails according to the principle of minimizing expected-error-cost, in order to avoid deleting useful e-mails. Experimental results confirm the validity of our method, and show that our approach is insensitive to ratio of feature subset selection.
出处 《电子学报》 EI CAS CSCD 北大核心 2006年第2期247-251,共5页 Acta Electronica Sinica
基金 国家自然科学基金(No.60496322)
关键词 代价敏感 邮件过滤 混合高斯模型 过滤器融合 cost-sensitive e-mail filter GMM combing multiple filters
  • 相关文献

参考文献7

  • 1Karl-Michael Schneider.A comparison of event models for na(i)ve bayes anti-spam e-mail filtering[A].Proc.10th Conference of the European Chapter of the Association for Computational Linguistics[C].Budapest,Hungary,2003.307-314.
  • 2熊应,朱斌,朱海云.电子邮件智能分类系统的设计[J].电子学报,2001,29(12):1653-1655. 被引量:6
  • 3Christian Siefkes,et al.Combining winnow and orthogonal sparse bigrams for incremental spam filtering[A].Proceedings of the 8th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD 2004)[C].2004.410-421.
  • 4孙怀江,胡钟山,杨静宇.基于证据理论的多分类器融合方法研究[J].计算机学报,2001,24(3):231-235. 被引量:25
  • 5Bauer E,Kohavi R.An empirical comparison of voting classification algorithms:bagging,boosting,and variants[J].Machine Learning,1999,36(1-2):105-139.
  • 6D Reynolds,R Rose.Robust text-independent speaker identification using Gaussian mixture speaker models[J].IEEE Trans Speech and Audio Proc,1995,3(1):72-83.
  • 7A K Jain,RPW Duin,J Mao.Statistical pattern recognition:a review[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(1):4-37.

二级参考文献5

共引文献29

同被引文献90

引证文献12

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部