摘要
本文在加权Hilbert空间L2(I,r(x))(I=(a,6),-∞≤a<b≤∞,r(x)> 0)中,利用辛几何,刻画了n阶对称微分算式的最小算子的对称扩张(含自伴扩张)及 Friedrichs扩张,分别获得了其扩张为对称扩张、Friedrichs扩张的充分必要条件.
In this paper, we give complex symplectic geometry characterizations for symmetric extensions (including self-adjoint extensions) and Friedrichs extension of the minimal operator generated by nth-order symmetric differential expression, defined in the weighted Hilbert space L^2(I,r(x)) (the non-degenerate interval I, with endpoints -∞≤ a, b ≤ ∞). The necessary and sufficient conditions which ensure that its extensions are symmetric extensions, Friedrichs extension are obtained respectively.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2006年第2期421-430,共10页
Acta Mathematica Sinica:Chinese Series