摘要
The effect of acetanilide herbicide mefenacet on soil microbial communities was studied using paddy soil samples with different short-term treatments. The culturable bacteria (plate counts), dehydrogenase activity and changes in community structure (denaturing gradient gel electrophoresis (DGGE) analysis) were used for biological community assessments. Mefenacet was a significant stimulus to cultural aerobic bacteria and dehydrogenase activity while Sphingobacterium multivorum Y1, a bacterium efficiently degrading the mefenacet, only induced the increasing colony-forming unit (CFU) of bacteria but little effect on dehydrogenase activity during the whole experiment. The degree of similarity between the 16S rDNA profiles of the communities was quantified by numerically analyzing the DGGE band patterns. Similarity dendrograms showed that the microbial community structures of the mefenacet-treated and non-treated soils were not significantly different. But supplement of S. multivorum Y1 could increase the diversity of the microbial community in the mefenacet-polluted paddy soil. This work is a new attempt to apply the S. multivorum Y1 for remediation of the mefenacet-polluted environments.
The effect of acetanilide herbicide mefenacet on soil microbial communities was studied using paddy soil samples with different short-term treatments. The culturable bacteria (plate counts), dehydrogenase activity and changes in community structure (denaturing gradient gel electrophoresis (DGGE) analysis) were used for biological community assessments. Mefenacet was a significant stimulus to cultural aerobic bacteria and dehydrogenase activity while Sphingobacterium multivorum Y1, a bacterium efficiently degrading the mefenacet, only induced the increasing colony-forming unit (CFU) of bacteria but little effect on dehydrogenase activity during the whole experiment. The degree of similarity between the 16S rDNA profiles of the communities was quantified by numerically analyzing the DGGE band patterns. Similarity dendrograms showed that the microbial community structures of the mefenacet-treated and non-treated soils were not significantly different. But supplement of S. multivorum Y1 could increase the diversity of the microbial community in the mefenacet-polluted paddy soil. This work is a new attempt to apply the S. multivorum Y1 for remediation of the mefenacet-polluted environments.
基金
TheN aturalScienceFoundationofZhejiangProvince (N o.Y 504002)
theNationalNaturalScienceFoundationofChina(No.30370048)andtheScientificResearchFundofZhejiangProvincialEducationD epartm ent(N o.20040890)