期刊文献+

中国国债收益率的多标度分析

The Multi-scaling Characters Analysis of China Treasury Bonds Market
下载PDF
导出
摘要 首先通过采用一种基于各个国债之间相关性的新测度方法,对17个国债日收益率时间序列进行聚类分析。利用Matlab在临界的阈值δ~0.0595时.将17个国债分成6类。然后,研究了每一个国债日收益率时间序列的价格波动结构.结果表明中国的国债市场也表现出一定程度上的多标度特征;同时还发现属于同一类型国债的多标度特征具有很强的自相似性.而不同类型国债之间的多标度特征则具有相当大的差异性。基于此.本文从6类国债中选取了6个国债进行多标度特征分析,发现国债010103、009908和010107标度函数的波动幅度很大.表现出明显的非线性特征,而其他3个国债标度函数的波动幅度则相对较小.但也表现出一定程度上的非线性特征。 The paper first makes clustering analysis for 17 treasury bonds' daily return time series by using a suitable metrical approach based on the correlation among the bonds. Using the Matlab software when the critical threshold value is appropriate 0.059 5, the paper classifies the bonds into six groups. Then,it also studies the price fluctuation structure of each bond's daily return series well, and the results show that there is to some extent multi-scallng characters for China treasury bond market. In the meanwhile, the paper finds that there is strong self-similarity among bonds belonging to the same group,while the multi-sealing characters among different bonds are different. On the basis of that,the paper chooses six bonds from the six groups,analyzes their multi-scaling characters and finds that the scaling functions' range of volatility of treasury bonds 010103, 009908 and 010107 is large and shows the evident non-linear character, while the scaling functions'range of volatility of other three bonds is comparatively small, representing non-linear character to some extent.
作者 李彪 杨宝臣
出处 《中国地质大学学报(社会科学版)》 2006年第2期62-65,共4页 Journal of China University of Geosciences(Social Sciences Edition)
基金 国家自然科学基金资助项目(70471051)
关键词 国债 聚类分析 Cophcnctic系数 多标度 treasury bond cluster analysis Cophenetic coefficient multi-scaling
  • 相关文献

参考文献13

二级参考文献20

  • 1俞乔.市场有效、周期异常与股价波动——对上海、深圳股票市场的实证分析[J].经济研究,1994,29(9):43-50. 被引量:297
  • 2宋颂兴,金伟根.上海股市市场有效实证研究[J].经济学家,1995(4):107-113. 被引量:161
  • 3[1]Harvey A C,Ruiz E,Shephard N. Multivariate stochastic variance models[J]. Review of Economic Studies,1994,61:247 264.
  • 4[2]Jacquier E,Polson N G,Rossi P E. Bayesian analysis of stochastic volatility models[J]. Journal of Business and Economic Statistics, 1994.12: 371 - 417.
  • 5[3]Ruiz E. Quasi-maximum likelihood estimation of stochastic volatility models[J]. Journal of Econometrics, 1994,63:289-306.
  • 6[4]Shephard N,Pitt M K. Likelihood analysis of non-Gaussian parameter-driven models[J]. Biometrica, 1997,84:653-667.
  • 7[5]Durbin J,Koopman S J. Monte Carlo maximum likelihood estimation for non-Gaussian state space models [J]. Biometrica, 1997,84: 669- 684.
  • 8[6]Abramovitz M,Stegun N. Handbook of mathematicalfunctions[Z]. New York:Dover Publications,1970.
  • 9Mantegna R N. Stanley H E. An Introduction to Econophysics: Correlations and Complexity in Finance[M]. Cambridge University Press,2000.
  • 10Badii R, Polity A. Complexity:Miorarchicad Structure.and Scading in Physics[C]. Cambridge:cambridge University Press, 1997.

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部