期刊文献+

高温气体流过圆管时壁面发散冷却的数值模拟 被引量:2

Numerical simulation of high temperature transpiration cooling in cylindrical porous channels
原文传递
导出
摘要 对超高温燃烧室发散冷却全场进行有效的数值模拟对燃烧室材料结构设计具有重要的意义。该文通过FLUENT6.1,采用RNG k-ε湍流模型,建立了高温气体流过圆管时多孔介质壁面发散冷却的全场耦合数值计算模型。该模型计算结果与低温氦气、低温空气发散冷却实验结果基本吻合。该文研究了常温氢气对超高温燃烧室内燃气的发散冷却,结果表明,忽略对流传质边界层的影响会导致计算预测的壁面温度偏高,忽略孔隙率局部分布的不均匀性会导致冷却壁面端部出现高温计算结果,这不符合常理。在注入率为1%左右时,冷却壁面温度在400~900K的范围内,壁面局部热流密度降至200kW/m^2左右,可以满足航天器燃烧室保护壁面的需要。 Efficient numerical predictions of the heat transfer in super high temperature engines are needed to design effective combustion structures. A whole-field numerical simulation of high temperature transpiration cooling in a cylindrical porous channel was developed using Fluent 6. 1 with the RNG k-ε turbulence model. The numerical results agreed well with experimental data for low temperature air and helium transpiration cooling. The model was then used to investigate GAS/GH2 transpiration cooling. The results indicate that neglecting the mass transfer will lead to much higher predicted wall temperatures, while neglecting the local porosity distribution will lead to high local temperature errors along the front part of the wall. For a 1% blowing ratio, the local heat flux was reduced to 200 kW/m^2 and the wall temperature was reduced to 400-900K, which is acceptable for rocket combustion chamber wails. :
作者 于淼 姜培学
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第2期242-246,共5页 Journal of Tsinghua University(Science and Technology)
基金 国家"八六三"高技术项目(2002AA722051)
关键词 传热学 多孔介质 发散冷却 数值模拟 耦合计算 heat transfer porous media transpiration cooling numerical simulation conjugate heat transfer
  • 相关文献

参考文献11

  • 1刘国球.液体火箭发动机原理[M].北京:宇航出版社,1993..
  • 2JIANG Peixue,YU Lei,SUN Jiguo,et al.Experimental research and numerical simulation of convection heat transfer in transpiration cooling[J].Applied Thermal Engineering,2004,24:1271-1289.
  • 3Choi S H,Scotti S J,Song K D,et al.Transpiring Cooling of a Scram-Jet Engine Combustion Chamber[R].NASA AIAA-97-2576,1997.
  • 4Mathelin L,B ataille F,Lallemand A.Blowing models for cooling surfaces[J].Int J Thermal Sci,2001,40:969-980.
  • 5刘伟强,陈启智,吴宝元.液体火箭发动机层板式预燃室液氧发汗冷却热控制[J].推进技术,1998,19(5):10-14. 被引量:9
  • 6孟丽燕,姜培学,余磊,任泽霈.发汗冷却中流动与换热的数值模拟[J].工程热物理学报,2002,23(5):593-595. 被引量:8
  • 7Hirschfelder J O,Curtiss C F,Bird R B.Molecular Theory of Gases and Liquids[M].New York:John Wiley & Sons,1954.
  • 8Hunt M L,Tien C L.Non-Darcy convection in cylindrical packed beds[J].Journal of Heat Transfer,1996,39(13):2803-2809.
  • 9Schnitzlein K.Modeling radial dispersion in terms of the local structure of packed beds[J].Department of Chemical Reaction Engineering,2001,(56):579-585.
  • 10Kays W M,Crawford M E.Convective Heat and Mass Transfer (2nd ed)[M].New York:McGraw-Hill,1980.

共引文献54

同被引文献18

  • 1赵福云,汤广发,刘娣,刘志强,王汉青.CFD数值模拟的系统误差反馈及其实现[J].暖通空调,2004,34(6):1-8. 被引量:9
  • 2惠晶,徐廷相,章利特,高铁瑜.高温陶瓷过滤器正向流动与过滤过程的数值计算[J].西安交通大学学报,2005,39(5):463-467. 被引量:2
  • 3龙威,李军,包钢.FLUENT软件在空气轴承研究领域的应用[J].机床与液压,2006,34(6):151-153. 被引量:20
  • 4凌建明,林小平,赵鸿铎.圆柱形桥墩附近三维流场及河床局部冲刷分析[J].同济大学学报(自然科学版),2007,35(5):582-586. 被引量:37
  • 5Tao Wenquan(陶文铨).(数值传热学).Xi’an: Xi’anJiaotong University Press, 200 1
  • 6Ma Dongsheng(马东升).Numerical Calculation Method(数值计算方法).Beijing: China Machine Press, 2005
  • 7GB 50400-2006. Engineering technical code for rain utilization in building and sub-district. Beijing: China Building Industry Press, 2006
  • 8Li Jiaqi(李佳琪),Lu Yishan(吕宜珊),Liu Zhongling(刘仲菱),et al. Dynamics study of the fried chestnut with sugar, http: //www. ntsec, gov. tw/activity/race-1/43/pdf/ e/O40204, pdf, 2003
  • 9Rohde U, Hohne T, Kliem S, et al. Fluid mixing and flow distribution in a primary circuit of a nuclear pressurized water reactor-validation of CFD codes. Nuclear Engineering and Design, 2007, 3:1-17
  • 10Narasimha M, Brennan M S, Holtham P N, et al. A comprehensive CFD model of dense medium cyclone performance. Minerals Engineering, 2007, 20:414-426

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部