期刊文献+

松弛状态非圆截面弹性螺旋细杆的稳定性 被引量:3

STABILITY OF A THIN ELASTIC HELICAL ROD WITH NONCIRCULAR CROSS SECTION IN RELAXED STATE
下载PDF
导出
摘要 研究松弛状态下的非圆截面弹性螺旋细杆,即带有原始曲率和挠率的非圆截面弹性杆的平衡稳定性问题.基于Kirchhoff动力学比拟,建立用欧拉角表达的弹性杆动力学方程.忽略线加速度引起的微小惯性力,仅考虑截面转动的动力学效应,使欧拉方程封闭.证明松弛状态下的非圆截面螺旋杆无论在空间域或时域均满足一次近似意义下的Lyapunov稳定性条件.从而为螺旋形态弹性细杆存在于自然界中的广泛性和稳定性作出理论解释.提示负泊松比材料的螺旋杆可能不稳定. This paper discussed the stability of a thin elastic helical rod with noncircular cross .section in relaxed state, i.e., the stability of a rod with intrinsic curvature and twisting. Based on the Kirchhoff' s kinetic analogy, the dynamical equations of the elastic rod were expressed by the Euler's angles. Neglecting the small force of inertia caused by the linear acceleration, only the inertial effect of the rotation of the cross section was considered, which made the Euler's equations closed. We proved that the Lyapunov' s stability condition in first approximation was satisfied for the helical rod in relaxed state in the spatial domain, as well as in the time domain. Therefore the extensive and stable existence of a thin elastic rod with helical configuratiori in the nature can be explained theoretically. It was alto noticed that a helical rod with negative Poisson ratio can be unstable.
作者 刘延柱
出处 《动力学与控制学报》 2005年第4期12-16,共5页 Journal of Dynamics and Control
基金 国家自然科学基金(10472067)~~
关键词 弹性细杆 Kirchhoff动力学比拟 LYAPUNOV稳定性 thin elastic rod, Kirchhoff' s kinetic analogy, Lyapunov' s stability
  • 相关文献

参考文献3

  • 1[1]Bouchiat C,Mezard MM.Elastic rod model of a supercoiled DNA molecule.The Europ.Phys.Journ.,2000,(E2):377~402
  • 2[3]Love AEH.A treatise on mathematical theory of elasticity.4-th ed.,New York:Dover,1927
  • 3[5]Liu YZ,Zu JW.Stability and bifurcation of helical equilibrium of thin elastic rod.Acta Mechanica,2004,167(1-2):29~ 39

同被引文献17

  • 1彭建华,刘延柱.弹性细杆的混沌形态[J].动力学与控制学报,2005,3(2):36-39. 被引量:4
  • 2刘延柱.轴向受压螺旋杆的平衡稳定性[J].固体力学学报,2005,26(3):256-260. 被引量:7
  • 3刘延柱,盛立伟.松弛状态圆截面螺旋细杆的弹性波传播[J].动力学与控制学报,2006,4(4):289-293. 被引量:1
  • 4武际可 黄永刚.弹性曲杆的稳定性问题[J].力学学报,1987,19(5).
  • 5Kirchhoff G. Uber das Gleichgewicht und die Bewegung eines unendlich dtinnen elastischen Stabes. J. Rein Angew. Math. , 1859,56:285-313.
  • 6Greenhill A G. Proc. Inst. Mech. Engrs, London, 1883: 182.
  • 7S P 铁摩辛柯,J M 盖莱,张福范译.弹性稳定理论.北京:科学出版社,第二版,1965:169.
  • 8Coyne J. Analysis of the formulation and elimination of loops in twisted cable. IEEE J. of Oceanic Engineering, 1990, 15(2) : 72-83.
  • 9孟道骥,梁科.微分几何[M].北京:科学技术出版社,2002.
  • 10Miyazaki Y, Kondo K. Analytical solution of spatial elastic and its application to kinking prob- lem[J]. International Journal of Solid and Analysis, 1997, 34(27) : 3619-3636.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部