期刊文献+

互为Hilbert变换对的双正交小波构造 被引量:3

The Design of Hilbert Transform Pairs of Biorthogonal Wavelet Bases
下载PDF
导出
摘要 证明了两个双正交小波滤波器组构成Hilbert变换对的充要条件,并从理论上说明了两个线性相位双正交小波系统构成Hilbert变换对的必要条件是它们的长度分别为奇数和偶数.在此基础上通过选择合适的小波消失矩和优化过程中的目标函数,提出了一种构造这类Hilbert变换对的新算法.采用该算法不但可以得到系数对称的线性相位小波滤波器组,而且在性能基本相当的条件下,滤波器长度较已有算法大幅度减小(以13/19和12/16小波为例,可以降到约为原来的1/2).通过适当调整设计参数,还可以得到全为有理系数的小波滤波器,从而进一步减少计算代价.实验表明上述构造得到的Hilbert变换在用于复数小波进行图像去噪时,处理时间可以降低为原来的2/3左右. The Hilbert transform pairs of biorthogonal wavelet bases are studied in this paper. A sufficient and necessary condition is given and proved, and a new algorithm for the design of Hilbert transform pairs is proposed. Being different from the existing algorithms, two linear phase wavelet filter banks are obtained with all symmetric coefficients here, by letting their length be odd and even separately and improving the goal function at the same time, Results of numerical experiments show that the above algorithm can shorten the length of FB efficiently in the similar approximation degree(Take 13/19 tap and 12/16 tap wavelets as an example, the lengths are reduced about 1/2). Especially, we can get a group of rational coefficients by adjusting the parameters in construction. Authors' work is valuable for the rapid and efficient application of many new wavelet theories such as complex wavelet and phaselet.
出处 《计算机学报》 EI CSCD 北大核心 2006年第3期441-447,共7页 Chinese Journal of Computers
基金 国家自然科学基金项目"小波与离散整数变换及其在数字水印中的应用"(10171109) 国家博士学科点专项基金项目"小波 多重网格与图像处理方法"(20049998006)资助
关键词 滤波器组(FB) 双正交小波 Hilbert变换对 复数小波 filter banks biorthogonal wavelet Hilbert transform pairs complex wavelet
  • 相关文献

参考文献11

  • 1Kingsbury N..Image processing with complex wavelets.Philosophical Transactions of the Royal Society A,1999,357:2543~2560
  • 2Kingsbury N..Complex wavelets for shift invariant analysis and filtering of signals.Applied and Computational Harmonic,2001,10(3):234~253
  • 3Gopinath R.A..The phaselet transform-An integral redundancy nearly shift-invariant wavelet transform.IEEE Transactions on Signal Processing,2003,51(7):1792~ 1805
  • 4Selesnick I.W..Hilbert transform pairs of wavelet basis.IEEE Signal Processing Letter,2001,8(6):170~173
  • 5Selesnick I.W..The design of approximate Hilbert transform pairs of wavelets bases via the flat delay filter.In:Proceedings of the IEEE International Conference on Acoustics,Speech,and Signal Processing(ASSP'01),Salt Lake City,UT,2001,3673~3676
  • 6Ozkaramanli H.,Yu R..On the phase condition and its solution for Hilbert transform pairs of wavelets bases.IEEE Transactions on Signal Processing,2003,51(12):3293~3294
  • 7Selesnick I.W..The design of approximate Hilbert transform pairs of wavelets bases.IEEE Transactions on Signal Processing,2002,50(5):1144~1152
  • 8Liang D.N.,Cheng L.Z.,Zhang Z.H..General construction of wavelet filters via a lifting scheme and its application in image coding.Optical Engineering,2003,42(7):1949~1955
  • 9Cheng L.Z.,Wang H.X..The solution of ill-conditioned symmetric Toeplitz systems via two-grid and wavelet method.Computers & Mathematics with Application,2003,46 (6):793~804
  • 10刘九芬,李峰,黄达人,刘九芬.滤波长度为4的双正交多尺度分析的构造[J].计算机学报,2002,25(11):1184-1188. 被引量:6

共引文献5

同被引文献18

  • 1李一宁,张培林,徐超,张云强.油液磨粒超声回波信号的双树复小波去噪研究[J].机械科学与技术,2015,34(2):229-233. 被引量:2
  • 2成礼智,王红霞,罗永编著.小波的理论与应用.北京:科学出版社,2005.268-269.
  • 3Kingsbury N. Complex wavelets for shift invariant analysis and filtering of signals. Appl Comput Harmonic, 2001, 10 (3) : 234.
  • 4Kingsbury N. Image processing with complex wavelets. Philos Trans Royal Soc A, 1999, 357:2543.
  • 5Gopinat H R A. The phaselet transform: An integral redundancy nearly shift invarlant wavelet transform. IEEE Trans Signal Process, 2003, 51 (7): 1792.
  • 6Selesnick I W. The design of approximate Hilbert transform pairs of wavelets bases via the flat delay filter // Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ASSP'01). American, 2001:3673.
  • 7Selesnick I W. Hilbert transform pairs of wavelet basis. IEEE Signal Process Lett, 2001, 8(6) : 170.
  • 8Selesnick I W. The design of approximate Hilbert transform pairs of wavelets bases. IEEE Trans Signal Process, 2002, 50(5): 1144.
  • 9Ozkaramanli H, Yu R. On the phase condition and its solution for Hilbert transform pairs of wavelets bases. IEEE Trans Signal Process, 2003, 51(12): 3293.
  • 10Thiran J P. Recursive digital filters with maximally flat group delay. IEEE Trans Circuit Theory, 1971, 18:659.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部