期刊文献+

自校正信息融合Kalman预报器

Self-tuning Information Fusion Kalman Predictor
下载PDF
导出
摘要 对含未知噪声统计的多传感器系统,用现代时间序列分析方法,基于滑动平均(MA)新息模型的在线辨识和求解相关函数矩阵方程组,可在线估计噪声统计,进而在按矩阵加权线性最小方差最优信息融合准则下,提出了自校正信息融合Kalman预报器。证明了它的收敛性,即它具有渐近最优性,且自校正融合Kal-man预报器比每个局部自校正Kalman预报器精度高。一个目标跟踪系统的仿真例子说明了其有效性。 For the muhisensor systems with unknown noise statistics, using the modem time series analysis method, based on on-line identification of the moving average (MA) innovation models, and based on the solution of the matrix equations for correlation function, the noise statistics can on-line be estimated, and further under the linear minimum variance optimal information fusion criterion weighted by matrices, a self-tuning information fusion Kalman predictor is presented Its convergence is proved, it has asymptotic optimality, and its accuracy is higher than each local self-tuning Kalman filter. A simulation example for a target tracking system shows its effectiveness.
出处 《科学技术与工程》 2006年第5期513-518,共6页 Science Technology and Engineering
基金 国家自然科学基金(60374026) 黑龙江大学自动控制重点实验室基金资助
关键词 多传感器信息融合 矩阵加权融合 MA新息模型 系统辨识 噪声方差估计 自校正Kalman预报器 muhisensor information fusion fusion weighted by matrices MA innovation model system identification noise variance estimation self-tuning Kalman predictor
  • 相关文献

参考文献2

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部