期刊文献+

高精度频率域弹性波方程有限差分方法及波场模拟 被引量:55

The method of finite difference of high precision elastic wave equations in the frequency domain and wave-field simulation
下载PDF
导出
摘要 有限差分方法是波场数值模拟的一个重要方法,但常规的有限差分法本身存在着数值频散问题,会降低波场模拟的精度与分辨率,为了克服常规差分算子的数值频散,本文采用25点优化差分算子,再根据最优化理论求取的优化系数,建立了频率空间域中弹性波波动方程的差分格式;为了消除边界反射,引入最佳匹配层,构造了各向同性介质中弹性波方程在不同边界和角点处的边界条件.最后由弹性波波动方程和边界条件,通过频率域有限差分法,分别利用不同震源对弹性波在均匀各向同性介质、层状介质及凹陷模型中的传播过程进行了数值正演模拟,得到了单频波波场、时间切片和共炮点道集,为下一步的研究工作(如成像、反演)提供了研究基础. The finite difference which is widely applied in seismic wave forward modeling, excursion and imaging, is an important method of wave-field numerical simulation. However, the routine finite difference has the problem of numerical dispersion which reduces precision and resolution of wave-field simulation. In order to overcome the numerical dispersion of routine finite-difference operators, 25-point optimized finite-difference operators are applied, and get the optimized coefl3cient on the basis of the optimization theory and establish a finite-difference format of elastic wave equations in the frequency-space domain. We introduce perfectly matched layer to attenuate the refection of the artificial boundary, and construct boundary and corner point conditions of elastic wave equations in isotropy media. Finally, according to elastic wave equations and boundary conditions, we respectively use different sources to implement simulation of elastic wave propagation in a homogenous isotropy medium, layered medium and a depression model with the frequency-domain finite-difference method. And a monochromatic wave field, time snapshot and common-shot point gathers are obtained, making the foundation for seismic imaging and inversion study.
出处 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2006年第2期561-568,共8页 Chinese Journal of Geophysics
基金 国家863高科技发展计划项目(2002AA614010_6)资助.
关键词 正演模拟 优化差分算子 最佳匹配层 Forward modeling, Optimized finite-difference operators, Perfectly matched layer
  • 相关文献

参考文献8

  • 1黄自萍,张铭,吴文青,董良国.弹性波传播数值模拟的区域分裂法[J].地球物理学报,2004,47(6):1094-1100. 被引量:26
  • 2董和风,王克协.弹性固体地层-流体井孔弹性波场的有限差分数值模拟[J].地球物理学报,1995,38(A01):205-215. 被引量:13
  • 3ZengY Q,He J Q,Liu Q H.The application of the perfectly matched layer in numerical modeling of wave propagation in poroelastic media.Geophysics,2001,66(4):1258 ~ 1266
  • 4Cerjan C,Kosloff D,Kosloff R,et al.A nonreflecting boundary condition for discrete acoustic and elastic wave equations.Geophysics,1985,50:705 ~ 708
  • 5Pratt R G.Frequency-domain elastic wave modeling by finite differences:A tool for crosshole seismic imaging.Geophysics,1990,55(5) :626 ~ 632
  • 6Min D J,Shin C,Kwon B D,et al.Improved frequency-domain elastic wave modeling using weighted-averaging difference operators.Geophysics,2000,65(3) :884 ~ 895
  • 7夏凡,董良国,马在田.三维弹性波数值模拟中的吸收边界条件[J].地球物理学报,2004,47(1):132-136. 被引量:23
  • 8Berenger J P.A perfectly matched layer for absorption of electromagnetic waves.J.Comput.Phys.,1994,114:185~200

二级参考文献16

  • 1[7]Randall C J. Absorbing boundary condition for the elastic wave equation. Geophysics, 1988,53:611 ~ 624
  • 2[8]Reynolds. Boundary conditions for the numerical solution of wave propagation problems. Geophysics, 1978,43:1099
  • 3[10]Graves R W. Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences. Bull. Seism. Soc. Am.,1996,88:881 ~ 897
  • 4[2]Cerjan C, Kosloff D, Kosloff R, et al. A nonreflecting boundary condition for discrete acoustic and elastic wave equations. Geophysics,1985, 50: 705 ~ 708
  • 5[3]Kosloff D, Kosloff R. Absorbing boundaries for wave propagation problems. J. Comput. Phys., 1986,63:363 ~ 376
  • 6[4]Berenger J P. A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys., 1994,114:185 ~ 200
  • 7[5]Clayton R, Engquist B. Absorbing boundary conditions for acoustic and elastic wave equations. Bull. Seism. Soc. Am., 1977,67:1529 ~ 1540
  • 8[6]Higdon R L. Absorbing boundary conditions for elastic waves. Geophysics, 1991,56:231 ~ 241
  • 9Atterman Z,Karal F C. Propation of elastic wave in layered media by finite difference methods. Bull. Seism. Soc. Am., 1968,58:367-398
  • 10Kosloff D, Reshef M, Loewenthal D. Elastic wave calculation by the Fourier method. Bull. Seism. Soc. Am., 1984, 74 (3):875-891

共引文献57

同被引文献980

引证文献55

二级引证文献455

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部