期刊文献+

基于共生理论的甲烷共气化过程分析 被引量:1

Process Analysis of Methane Simultaneous Oxidative Conversion to Syngas Based on Symbiosis Theory
下载PDF
导出
摘要 运用共生理论,对甲烷、二氧化碳和氧气共气化制备合成气的耦合过程进行了分析,以便给定实际生产过程的最优操作条件.从甲烷部分氧化、二氧化碳重整和水蒸气重整等典型反应的热力学以及本征反应动力学分析入手,将一氧化碳和氢气视为该耦合过程的主质参量,得到了上述共生体系的特征共生度表达式.以进料中二氧化碳相对含量为调整变量,目的产品合成气中氢碳的量之比为考察指标,通过质参量兼容原理及共生稳定条件下的共生度关系,建立了氢碳的量之比与进料量之间的关联式.分析结果表明:改变进料中二氧化碳的相对含量,可以在一定范围内调整系统的能耗和合成气中氢碳的量之比;同时,可求得一最优的二氧化碳进料量,使得该体系满足共生稳定,能量损耗最小,从而实现综合考虑经济效益和能耗等因素的共生系统优化. The coupling process of CH4, CO2, O2 simultaneous oxidative conversion to produce syngas was analyzed based on the symbiosis theory to determine the optimum operating parameters of optimization. Regarded CO and H2 as the primary quality parameters, the characteristic symbiotical degree expression of the symbiosis system was obtained via the analysis of the ther- modynamics and kinetics for representative reactions, such as partial oxidation of methane, carbon dioxide reforming and steam reforming. Taken the relative content of CO2 in the feed as the adjusting parameter and the n (H)/n (C) in syngas as the objective function, the corresponding relationship was established by the compatibility principle of the parameters and the symbiotical de- gree relation under steady condition. The analysis results indicate that with the change of relative content of C()2 in the feed, the n(H)/n(C) in the syngas product and energy consumption of the system can be adjusted within an appropriate range, and the optimized feed of CO2 leads to a desired system with symbiosis stability and the least energy consumption.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2006年第3期324-327,共4页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金重点资助项目(20436040)
关键词 共生理论 合成气 耦合过程 symbiosis theory syngasl coupling process
  • 相关文献

参考文献8

二级参考文献33

  • 1宋维端 朱炳辰 等.C301铜基催化剂甲醇合成反应动力学(Ⅰ)本征动力学模型[J].化工学报,1988,39:401-408.
  • 2张均利 宋维端 等.C301铜基催化剂甲醇合成反应动力学(Ⅱ)宏观动力学模型[J].化工学报,1988,39:409-415.
  • 3钟娅玲 朱炳辰 等.C301铜基催化剂甲醇合成反应动力学(Ⅲ)平行反应的效率因子[J].化工学报,1988,39:416-420.
  • 4Shilov A E, Shulpin G B. Activation of C-H bonds by metal complexes [J]. Chem Rev, 1997, 97(8): 2879-2932.
  • 5Stahl S S, Labinger J A, Bercaw J E. Homogeneous oxidation of alkanes by electrophilic late transiytion metal [J]. Angew Chem Int Ed, 1998, 37: 2180-2192.
  • 6Arakawa H, Aresta M, Armor J N, et al. Catalysis research of relevance to carbon management: progress, challenges, and opportunities [J]. Chem Rev, 2001,101: 953-996.
  • 7Istva T H, Rayamond A C, John M M. Low-temperature methane chlorination with aqueous platinum chlorides in the presence of chlorine [J]. Organometallics, 1993,12: 8-10.
  • 8Lin M, Hogan T E, Sen A. Catalytic cabon-cabon and cabon-hydrogen bond cleavage in lower alkanes [J]. J Am Chem Soc, 1996, 118: 4574-4580.
  • 9Periana R A, Doube J T, Evitt R E, Lottler D G, Wentrcek P R, Voss G, Masuda T. A mercury-catalyzed high-yield system for the oxidation of methane to methanol [J]. Science, 1993, 259: 340-343.
  • 10Periana R A, Doube J T, Gamble S, Taube H, Satoh T, Fujii H. Platinum catalysts for the high-yield oxidation of methane to methanol derivation [J]. Science, 1998, 280: 560-564.

共引文献80

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部