期刊文献+

悬臂压杆大变形的优化算法

Optimum Algorithm for Large Deformation of a Cantilever Under Pressure on Free End
下载PDF
导出
摘要 提出一种解决几何非线性问题的优化算法,研究了悬臂压杆的几何非线性大变形问题.取悬臂压杆大变形后的平衡状态为研究对象,利用整体坐标系下的坐标关系式表示出自由端端点坐标,构建端点未知坐标的目标函数,确定悬臂压杆大变形的最优化问题,编制优化程序进行求解.通过分析典型算例,并同有限元方法计算结果相比较,表明本文算法在求解强非线性变形中的正确性,为处理复杂几何非线性大变形问题提供了有效的思想. An optimum algorithm is proposed to solve the geometrically nonlinear problem of Large deformation of a cantilever under pressure on free end. The cantilever in equilibrium after large deformation is studied. The coordinates of the free end are given through coordinate transformation formulae so as to define an objective function in terms of unknown coordinates of the endpoint. Then, make sure of the optimization problem of the large deformation of the cantilever under pressure on free end. An optimized algorithm is thus programmed for the problem. A typical numerical example is given and the result is analyzed in comparison with that by FEM. It is revealed that the algorithm is reliable in solving he strongly geometrically nonlinear deformation problem, which provides a prospective idea to solve the geometrically nonlinear large deformation problems that are more complex.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第3期352-354,共3页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(50475169 50174020)
关键词 悬臂压杆 大变形 有限元方法 强几何非线性 优化算法 cantilever under pressure on free end large deformation FEM strongly geometrically nonlinear optimum algorithm
  • 相关文献

参考文献10

  • 1Bathe K J.Large displacement analysis of three dimensional beam structures[J].Int J Numer Meth Eng,1979,4:961-986.
  • 2Crisfield M A.A consistent corotational formulation for nonlinear three dimensional beam elements[J].Comp Meth Appl Mech Eng,1990,81:131-150.
  • 3Meek J L.Geometrically nonlinear analysis of space frames by an increment iterative technique[J].J Comp Meth Appl Eng,1984,47:261-282.
  • 4王恒华,沈祖炎,陆瑞明.平面梁杆结构几何非线性分析的一种简便方法[J].计算力学学报,1997,14(1):119-123. 被引量:8
  • 5Karan S S.Geometrically non-linear formulation for two dimensional curved beam element[J].Computers and Structures,1983,17(1):105-114.
  • 6Narayanan G,Krihnamoorthy C S.An investigation of geometric non-linear formulation for 3D beam element[J].Int J Non-Linear Mechanics,1990,25(6),643-662.
  • 7Reklaitis G V,Ravindran A,Ragsdell K.Engineering optimization methods and application[M].New York:Wiley Interscience Publication,1988.87-98.
  • 8侯祥林,丛德宏,徐心和.倒立单摆摆起开环控制律的最优化算法[J].东北大学学报(自然科学版),2004,25(1):9-12. 被引量:10
  • 9王永岗,包力成.弹性梁大挠度问题的纵横弯曲法[J].甘肃工业大学学报,1994,20(2):59-63. 被引量:6
  • 10Timoshenko S P,Gere J M.Theory of elastic stability[M].New York:McGraw-Hill,1961.84-92.

二级参考文献14

  • 1于永南,帅健,吕英民,蔡强康.下部钻具组合的大变形分析——有限元动坐标迭代法的应用[J].石油大学学报(自然科学版),1993,17(1):36-41. 被引量:5
  • 2朱慈勉,计算结构力学,1992年
  • 3陆念力,建筑机械,1990年,9期
  • 4谢贻权,弹性和塑性力学中的有限单元法,1981年
  • 5邓长根,同济大学学报,1994年,增刊
  • 6Mori S, Nishiharah H, Furuta K. Control of unstable mechanical system control of pendulum[J]. Int J Control, 1976,23(5):673-692.
  • 7Furuta K, Okutani I, Sone H. Computer control of a double inverted pendulum[J]. Comput & Enging, 1978 ,1(5):67-84.
  • 8Furuta K, Hiroyuki K, Kosuge K. Digital control of double inverted pendulum on an inclined rail[J]. Int J Control, 1980,32(5):907-924.
  • 9Furuta K, Ochai T, Ono N. Attitude control of a triple-inverted pendulum[J]. Int J Control, 1984,39(6):1351-1365.
  • 10Meier H, Farwig Z, Unbehauen H. Discrete computer control of a triple inverted pendulum[J]. Optimal Control Application & Methods, 1990,11(2):157-171.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部