期刊文献+

非固定步长的无向循环图的支撑树数

The Number of Spanning Trees in the Undirected Circulant Graphs with Non-fixed Jumps
下载PDF
导出
摘要 图的支撑树数是图的重要的不变量,也是网络可靠性的重要量度.循环图是一个重要的图类,可应用于局域网和分布系统的设计中.对有固定步长的循环图,其支撑树数已得到了研究.本文考虑有非固定步长的无向循环图Cpn(a1,a2,…,ak,q1n,q2n,…,qmn),这里a1,a2,…,ak,q1,q2,…,qm,n和p都是正整数,a1≤a2≤…≤ak≤n/2,q1≤q2≤…≤qm≤p/2,且n是可变化的,因而有些步长并非固定.给出其支撑树数的一个公式,并得到其渐近性态和常数系数的线性递归关系. The number of spanning trees is an important invariant of a graph.it is also an important measure of the reliability of a network. The circulant graphs are an important class of graphs, they can be used in the designing of local area networks and distributed systems. For the circulant graphs with fixed jumps,the number of their spanning trees have been studied. In this paper.the undirected circulant graphs with non-fixed jumps Cpn(a1,a2…,ak,q1n,q2n,…,qmn) were considered, where (a1,a2,…,ak,q1,q2,…,qm). n and p were positive integers,a1≤a2≤…≤ak≤n/2,q1≤q2≤…≤qm≤p/2. and n changes (some steps are non-fixed). A formula for the number of their spanning trees was given, Furthermore its asymptotic behaviors were considered and the linear recurfence relations with constant coefficients were also obtained.
作者 陈协彬
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第2期154-156,共3页 Journal of Xiamen University:Natural Science
基金 国家自然科学基金项目(10271114) 福建省教育厅科技项目(JA03147)资助
关键词 支撑树数 无向循环图 渐近性态 线性递归关系 number of spanning trees undirected circulant graph asymptotic behavior linear recurrence relation
  • 相关文献

参考文献10

  • 1Biggs N.Algebraic Graph Theory[M].Cambridge:Cambridge University Press,1993.
  • 2Harary F.Graph Theory[M].Reading.Mass.:AddisonWesley,1969.
  • 3Boesch F T,Prodinger H.Spanning tree formulas and Chebyshev polynomials[J].Graphs and Combin.,1986(2):191-200.
  • 4Li X L,Zhang F J.On the numbers of spanning trees and Eulerian tours in generalized de Bruijn graph[J].Discrete Math.,1991,94:189-197.
  • 5陈协彬.路或圈的笛卡尔乘积图的支撑树数[J].数学物理学报(A辑),2003,23(1):70-76. 被引量:4
  • 6Bermond J C,Comellas F,Hsu D F.Distributed loop computer networks:a survey[J].J.Parallel and Distributed Computing,1995,24:2-10.
  • 7Zhang Y P,Yong X R,Golin M J.The number of spanning trees in circulant graphs[J].Discrete Math.,2000,223:337-350.
  • 8Chen X B,Lin Q Y,Zhang F J.The number of spanning trees in odd valent circulant graphs[J].Discrete Math.,2004,282:69-79.
  • 9张福基,永学荣.循环图的支撑树数与Euler环游数的渐近计数定理[J].中国科学(A辑),1998,28(12):1066-1073. 被引量:1
  • 10柯召 魏万迪.组合论(上册)[M].北京:科学出版社,1984..

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部