摘要
利用矩形域中带连续边界条件的多元散乱数据最优插值方法,结合张量积型参数样条插值,从挖补的思想得到启发,提出一种适合大规模散乱数据曲面造型的参数样条插值挖补方法.用该方法构造的参数曲面内部Cm,n连续,挖补的矩形边界分别为Cm-1,0和C0,n-1连续.最后就常见的m=n=2时的双三次样条给出一些数值例子,说明该算法简单易行,效果良好.
Using multivariate optimal interpolation to scattered data with uniform rectangular partition and continuous boundary conditions, applying the paradigm of tensor product parametric spline surface interpolation, and hole filling technique, a novel approach to construct smooth surface over massive scattered data is presented. The resulting surface is C^m,n in the interior, and across the boundaries of hole filling region are C^m- 1,0 and C^0,n- 1 respectively. Numerical examples for m = n = 2 bi-cubic surface show that the method is easy and applicable.
出处
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2006年第3期372-377,共6页
Journal of Computer-Aided Design & Computer Graphics
基金
国家自然科学基金(60475042)
广东省自然科学基金重点项目(036608)
香港中山大学高等学术研究中心基金
关键词
大规模散乱数据
样条插值
参数曲面
挖补
large scale scattered data
spline interpolation
parametric surface
hole filling