期刊文献+

L_∞范数下使用基本曲线和修正曲线的带约束Bézier曲线降阶 被引量:6

Constrained Degree Reduction of Bézier Curve in L_∞ Norm Using Basic Curve and Correction Curve
下载PDF
导出
摘要 为避免直接求解基于L∞距离的带约束逼近的非线性最优解引起的复杂性,提出了一种把降阶逼近曲线分解为基本曲线和修正曲线的降阶方法.基本曲线利用约束Legendre多项式可得到显式解,且保证降阶后曲线满足要求的边界插值条件;修正曲线的控制顶点由降阶逼近曲线和原曲线的差定义,能够在L∞范数意义下极小化降阶逼近曲线与原曲线的误差.文中方法以简单稳定的方式实现保端点插值的一次降多阶,并达到L∞范数意义下对原曲线的近似最佳逼近.最后通过实例说明了文中方法的有效性. To avoid the complexity that arose from directly solving the constrained optimization in L∞ norm, we present a new method, which decomposes the approximation curve into two parts: the basic curve and the correction curve. The basic curve can be explicitly obtained by using constrained Legendre polynomials, and it satisfies the constrained conditions imposed on the approximation curve. The correction curve, whose control points are defined by the difference between the original curve and the approximation curve, is used to minimize the error in L∞ norm. The new method performs multi-degree reduction at one time in a steady and simple way, and achieves near optimal uniform approximation. Examples are included to show the performance of new method.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2006年第3期401-405,共5页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(60403036) 教育部博士点基金(20020422030)
关键词 BÉZIER曲线 降阶 约束Legendre多项式 基本曲线 修正曲线 curve Bézier curve degree reduction constrained Legendre polynomials basic curve correction
  • 相关文献

参考文献16

  • 1Eck M.Least squares degree reduction of Bézier curves[J].Computer-Aided Design,1995,27(11):845-851
  • 2Kim H J,Ahn Y J.Good degree reduction of Bézier curves using constrained Jacobi polynomials[J].Computers and Mathematics with Applications,2000,40(10/11):1205-1215
  • 3Ahn Y J.Using Jacobi polynomials for degree reduction of Bézier curves with Ck-constraints[J].Computer Aided Geometric Design,2003,20(7):423-434
  • 4Ahn Young Joon,Lee Byung-Gook,Park Yun beom,et al.Constrained polynomial degree reduction in the L2-norm equals best weighted Enclidean approximation of coefficients[J].Computer Aided Geometric Design,2004:21(2):181-191
  • 5Lutterkort D,Peters J,et al.Polynomial degree reduction in the L2-norm equals best Euclidean approximation of Bézier coefficients[J].Computer Aided Geometric Design,1999,16(7):607-612
  • 6Watkins M,Worsey A.Degree reduction for Bézier curves[J].Computer-Aided Design,1988,20(7):398-405
  • 7Eck M.Degree reduction of Bézier curves[J].Computer Aided Geometric Design,1993,10(4):237-251
  • 8Bogacki P,Weinstein S,Xu Y.Degree reduction of Bézier curves by uniform approximation with endpoint interpolation[J].Computer-Aided Design,1995,27(9):651-661
  • 9Lachance M A.Chebyshev economization for parametric surfaces[J].Computer Aided Geometric Design,1988,5(3):195-208
  • 10Chen Falai,Lou Wenping.Degree reduction of interval Bézier curves[J].Computer-Aided Design,2000,32(10):571-582

同被引文献66

引证文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部