期刊文献+

GeSi CVD系统的流体力学和表面反应动力学模型 被引量:3

A Kinetics and Transport Model of Ge_xSi_(1-x) Chemical Vapor Epitaxy
下载PDF
导出
摘要 本文首次提出了一个用以分析GexSi1-x合金CVD生长的流体力学和表面反应动力学的统一模型,利用流体力学的偏微分方程组计算了反应管内的速度场、温度场和浓度场。讨论了反应管中的质量传输对生长速度的影响和生长过程中锗和硅的不同的生长速度控制机制。从生长的初始条件出发同时模拟了GexSi1-x合金外延层的生长速度和外延层中的锗组分。计算结果和实验结果符合得很好。本文还定量地解释了外延速度及薄膜中锗组分随GeH4浓度的变化规律。 A model that combines mass transportation process and surface kinetics is firstly applied to analyze the GexSi1-xCVD process. The temperature, velocity ad concentration distributions in the reactor are calculated by the partial different equations of fluid dynamics. The surface kinetics is used to discuss the deposition of Si and the mass transportation process is used to discuss the deposition of Ge. The theoretical relationship between the initial conditions and the Ge composition x in the solid has been established. The calculated result of the growth rate and the Ge composition in the solid agree with the experiment data. The increase of the growth rate and Ge composition x with the increase of initial GeH4 concentration is explained quantitatively by our model.
出处 《电子学报》 EI CAS CSCD 北大核心 1996年第5期7-12,共6页 Acta Electronica Sinica
关键词 化学气相外延 外延生长 半导体材料 硅化锗 Chemical vapor epitaxy Ge_xSi_(1-x) Mechanism of epitaxy
  • 相关文献

参考文献1

  • 1郭予龙,电子学报,1991年,10卷,3期,30页

同被引文献17

  • 1徐谦,左然,张红.反向流动垂直喷淋式MOCVD反应器设计与数值模拟[J].人工晶体学报,2005,34(6):1059-1064. 被引量:13
  • 2Lee M L, Fitzgerald E A, Bulsara M T, et al. Strained Si, SiGe, and Ge Channels for High-mobility Metal-oxide- semiconductor Field-effect Transistors[J]. Appl Phys, 2005, 97(1) : 1-27.
  • 3Huang L J, Chu J O, Cananei D F, et al. SiGe-on-insulator Prepared by Wafer Bonding and Layer Transfer for High-performance Field-effect Transistors [J].Applied Physics Letter, 2009, 78(9) : 1267-1269.
  • 4Hock G, Kohn E, Rosenblad C, et al. High Hole Mobility in SiGe Channel Meta-oxide Semiconductor Field-effect Transistors Grown by Plasma-enhanced Chemical Vapor Deposition[J]. Applied Physics Letter, 2000, 76 (26): 3920- 3922.
  • 5Sutton A K, Haugerud B M, Yuan Lu, et al. Proton Tolerance of Fourth-generation 350 GHz UHVCVD SiGe HBTs. [J]. IEEE Trans on Nuclear Science, 2004, 51(6) : 3736-3742.
  • 6Hartmann J M, Burdin M, Rolland G, et al. Growth Kinetics of Si and SiGe on Si(1 0 0), Si(1 1 0) and Si(1 1 1) Surfaces [J]. Crystal Growth, 2006, 294: 288-295.
  • 7Song Y J, Lim J W, Kang J Y, et al. High Transconductance Modulation-doped SiGe pMOSFETs by RPCVD [J]. Electronics Letters, 2002, 38(23): 1479-1480.
  • 8Singer P H. Techniques of Low Pressure Chemical Vapor Deposition [J]. Semiconductor International, 1984, 7(5) : 72- 77.
  • 9关旭东.硅集成电路工艺基础[M].北京:北京大学出版社,2001.
  • 10Yao Zhaohui, Yoder G L, Culbertson C T, et al. Numerical Simulation of Dispersion Generated by a 180 Turn in a Microehannel [J]. Chinese Physies B, 2002, 11(3): 226-232.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部