期刊文献+

交叉积与极大次环 被引量:1

Crossed products and maximal orders
下载PDF
导出
摘要 研究了交叉积R*G和次环,证明了R*G是半素G o ld ie环当且仅当R是半素G o ld ie环.在R为半素G o ld ie环的前提下,证明了R是G-极大次环当且仅当R*G是分次极大次环.最后给出了R*G为素环的一个等价条件. In this paper, crossed products and orders are discussed. It is shown that R * G is a semiprime Goldie ring if and only if R is a semiprime Goldie ring, and that R* G is a graded maxmal order if and only if R is a G-maximal order. Finally, a necessary and sufficient condition for R * G to be prime is given.
出处 《扬州大学学报(自然科学版)》 CAS CSCD 2006年第1期1-4,共4页 Journal of Yangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(10471121)
关键词 交叉积 半素环 Goldie环 次环 crossed product t semiprime ring t Goldie ring order
  • 相关文献

参考文献9

  • 1MARUBAYASHI H,YI Zhong.Skew group rings which are semi-hereditary and prufer orders in simple Artinian rings[J].Alg Rep Theory,2000,3(3):259-275.
  • 2BRUNGS H H,MARUBAYASHI H,UEDA A.A classification of primitive ideals of Dubrovin valuation rings[J].Houston J Math,2003,29(3):595-608.
  • 3MARUBAYASHI H.On semi-hereditary orders integral over a commutative valuation rings[J].J Alg,2004,276(2):423-452.
  • 4魏俊潮.正则环的若干刻画[J].扬州大学学报(自然科学版),2002,5(3):1-4. 被引量:5
  • 5GOODEAL K R,WARFIELD R B,Jr.An introduction to noncommutative Noetherian ring[M].Cambridge:Cambridge Univ Press,1989.
  • 6MCCONNELL J C,ROBSON J C.Noncommutative Noetherian ring[M].New York:John Wiley & Sons Ltd,1987.
  • 7VAN den BERGH M,VAN OYSTAEYEN F.Lifting maximal orders[J].Comm Alg,1989,17(2):341-349.
  • 8LORENZ M,PASSMAN D S.Prime ideals in crossed products of finite groups[J].Israel J Math,1979,33(2):89-132.
  • 9COHEN M,MONTGOMERY S.Group-graded rings,smash products,and group actions[J].Trans Amer Math Soc,1984,282(1):237-258.

二级参考文献4

  • 1[1]YOUSIF M F. On continuous rings [J]. J Alg, 1997, 176: 495~509
  • 2[2]NICHOLSON W K, YOUSIF M F. Principally injective rings [J]. J Alg, 1995, 174: 77~93
  • 3[3]KIM N K, KIM J Y. On simple singular GP-injective modules [J]. Comm in Alg, 1999, 27(5): 2087~2096
  • 4[4]REGE M B. On regular rings and SF-rings [J]. Math Japonica, 1986, 31: 927~936

共引文献4

同被引文献7

  • 1KADISON L, STOLIN A A. An approach to Hopf algebras via Frobenius coordinates Ⅱ [J]. J Pure & Appl Alg, 2002, 176(2/3):127-152.
  • 2BEIDAR K I, TORRECILLAS B. On actions of Hopf algebras with cocommutative coradical [J]. J Pure & ApplAlg, 2001, 161(1/2): 13-30.
  • 3MOSTEIG E, SWEEDLER M E. Valuations and filtrations [J].J Symbolic Comput, 2002, 34(5): 399-435.
  • 4GRANA M. A freness theorem for Nichols algebras [J]. J Alg, 2000, 231(1):235-257.
  • 5SWEEDLER M E. Hopf algebras [M]. New York:Benjamin, Inc, 1969.
  • 6MONTGOMERY S. Hopf algebras and their actions on rings [M]//AMS. CBMS Series in Math : Vol. 82. Providence:AMS, 1993.
  • 7德洛兹德ЮА,基里钦科ВВ.有限维代数[M].刘绍学,张英伯,译.北京:北京师范大学出版社,1983.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部