期刊文献+

基于改进DFNN的短期电价预测新方法 被引量:5

A new approach to short-term price forecasting based on improved DFNN
下载PDF
导出
摘要 提出了一种改进的动态模糊神经网络DFNN(Dynam ic Fuzzy Neural Network)的短期电价预测方法。首先对采集到的信息进行特征提取,然后利用模糊粗糙集理论中的信息熵进行属性简化、去掉冗余信息,最后用得到的属性作为动态模糊神经网络(DFNN)的输入进行训练预测。在模糊神经网络内部引入递归环节,构成了动态模糊神经网络,并采用具有全局寻优能力的遗传算法来训练网络,克服了单纯BP算法易陷入局部最优解的困境。最后以美国加州电力市场公布的2000年数据进行了模型训练和预测,结果表明该方法所建立的预测模型具有较高的预测精度。 An approach of improved dynamic fuzzy neural network for power system short-term price forecasting is proposed. Firstly, the fuzzy-rough set theory is applied to find relevant factors to the price among varied factors, then the dynamic fuzzy neural network (DFNN) model is trained using historical daily price and load data selected hefore performing the final forecast. The DFNN is constructed by introducing rccursion segment in the fuzzy neural network, and the network is trained using the genetic algorithm and BP algorithm to avoid being trapped in the local convergence. With the established model, the day-ahead Market Clearing Prices (MCPs) of California Electricity Market are successfully forecasted. The analysis of the obtained forecasting results show that the presented method possesses better convergence and more accuracy.
出处 《继电器》 CSCD 北大核心 2006年第6期34-38,共5页 Relay
关键词 出清电价 短期电价预测 动态模糊神经网络(DFNN) market clearing price short-term price forecasting DFNN
  • 相关文献

参考文献8

  • 1Gao F,Guan X H.Forecasting Power Market Clearing Price Using Neural Networks[A].Proceeding of the 3rd World Congress on Intelligence Control and Automation.China:2000.
  • 2Francisco N J,Javier C,et al.Forecasting Nextday Electricity Prices by Time Series Models[J].IEEE Trans on Power Systems,2002.
  • 3Wang A,Ramsay B.Prediction of System Marginal Price in the UK Power Pool Using Neural Networks[A].Proceedings of IEEE International Conference.1997.2116-2120.
  • 4杨莉,邱家驹,江道灼.基于BP网络的下一交易日无约束市场清算价格预测模型[J].电力系统自动化,2001,25(19):11-14. 被引量:41
  • 5Disorntetiwat P,Dagli C H.Simple Ensemble-averaging Model based on Generalized Regression Neural Network in Financial Forecasting Problems[A].Adaptive Systems for Signal Processing,Communications,and Control Symposium,IEEE.2000.1-4.
  • 6Lyer A,Fung C C,Gedeon T.A Fuzzy-neural Approach to Electricity Load and Spot-price Forecasting in a Deregulated Electricity Market[A].TENCON Conference on Convergent Technologies for Asia-Pacific Region.2003.15-17.
  • 7杨洪明,段献忠.电价的混沌特性分析及其预测模型研究[J].电网技术,2004,28(3):59-64. 被引量:57
  • 8California Electricity Market Data[EB/OL].Available:http://www.ucei.berkeley.edu/.

二级参考文献18

  • 1[1]Davison M, Anderson C L, Marcus B. Development of a hybrid model for electrical power spot prices[J]. IEEE Trans on Power System, 2002, 17(2):257-264.
  • 2[2]Nogales F J, Coejejo A.J, Espinola R. Forecasting next-day electricity prices by time series modiels[J]. IEEE Trans on Power System, 2002, 17(2):342-348.
  • 3[3]O'Neill-Carrillo E, Heydt G T, Kostelich E J. Nonlinear deterministic modeling of highly varying loads[J]. IEEE Trans on Power Delivery, 1999,14(2): 537-542.
  • 4[4]Harrison R G, Yu D, Oxley L, et al. Non-linear noise reduction and detecting chaos :some evidence from the S&P Composite Price Index[J]. Mathematics and Computers in Simulation, 1999, 48(6): 497-502.
  • 5[5]Parker T S, Chua L O. Practical numerical algorithms for chantic systems[M], Berlin:Springer Verlag, 1989.
  • 6[6]Fraser A M, Swinney H L, Independent coordinates for strange attractors fiom mutual information[J]. Physical Review A, 1986, 33: 1134-1140.
  • 7[7]Kennel M B, Brown R, Abarbanel H D I. Determining embedding dimension for phase-space reconstruction using a geometrical construction[J]. Physical ReviewA, 1992, 45(6): 3403-3411.
  • 8[8]Grassberger P, Procaccia I. Measuring the strangeness of stange attractor[J]. PhhysicaD, 1983, 9:198-206.
  • 9[9]Rosenstein M T, Coilins JJ, De Luca C J. Apractical method for calculating largest Lyapunov exponents from small data sets[J]. PhysicaD, 1993, 65:117-134.
  • 10[10]Theiler J, Eubank S, Longtin A, et al. Testing for nonlinearity in time series:themethod of surrogate data[J]. Physica D, 1992, 58. 77-94.

共引文献88

同被引文献62

引证文献5

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部