摘要
A photochemical model of the atmosphere constitutes a non-linear, non-autonomous dynamical system, enforced by the Earth's rotation. Some studies have shown that the region of the mesopause tends towards non-linear responses such as period-doubling cascades and chaos. In these studies, simple approximations for the diurnal variations of the photolysis rates are assumed. The goal of this article is to investigate what happens if the more realistic, calculated photolysis rates are introduced. It is found that, if the usual approximations-sinusoidal and step fiunctions—are assumed, the responses of the system axe similar: it converges to a 2-day periodic solution. If the more realistic, calculated diurnal cycle is introduced, a new 4-day subharmonic appear.
A photochemical model of the atmosphere constitutes a non-linear, non-autonomous dynamical system, enforced by the Earth's rotation. Some studies have shown that the region of the mesopause tends towards non-linear responses such as period-doubling cascades and chaos. In these studies, simple approximations for the diurnal variations of the photolysis rates are assumed. The goal of this article is to investigate what happens if the more realistic, calculated photolysis rates are introduced. It is found that, if the usual approximations-sinusoidal and step fiunctions—are assumed, the responses of the system axe similar: it converges to a 2-day periodic solution. If the more realistic, calculated diurnal cycle is introduced, a new 4-day subharmonic appear.