期刊文献+

非均匀性岩石破裂的网格效应 被引量:2

MESH EFFECTS ON FAILURE PROCESSES OF HETEROGENEOUS ROCKS
下载PDF
导出
摘要 主要在考虑岩石介质非均匀性的基础上。研究岩石破裂过程中的网格尺寸效应。首先,介绍RFPA软件中网格划分特点和裂纹扩展处理方法,讨论非均匀性对预制裂纹扩展的影响;然后,模拟两组结构相同但网格数目和尺寸不同的岩石材料的破裂过程。分析在非均匀性岩石中单元尺寸对于岩石破裂过程的影响。结果表明,在均质度较高的岩石试件中,岩石强度相对高,并且裂纹扩展表现出很强的脆性:随着网格数目的增加和网格尺寸的减小,岩石强度逐渐降低,并且趋向一个稳定值。考虑到岩石的非均匀性后的破坏过程分析必额考虑由破坏0f起的应力重新分布,且单元尺寸满足一定的细观特征尺度后,才能保持破裂分析的稳定性和可靠性,体现破裂过程分析和应力场和位移场分析的不同之处。在均匀条件假设下,网格的尺寸主要和结构特征相关,但是在非均匀介质中,网格的尺寸还与材料的非均匀性和细观特征尺度密切相关。 The purpose of this paper is to study the mesh size sensitivity in rock progressive failure process by taking heterogeneity into consideration. The size of crack tip in the plastic zone is obtained by using classical elasto-plastic theory. Then two numerical models containing a pre-existing crack are conducted to uniaxial compressive loading to investigate the homogeneity effects. Two numerical specimens are divided into the same grid meshes and they have same geometry and size but different heterogeneity. In the other way, four numerical models with the same geometry and size are divided into different meshes to study the mesh sensitivity. Numerical analysis results show that the peak strength of the rock specimens increases as homogeneity increases and crack propagates smoothly until brittle fracture takes place. It also approves that the mesh size should be small enough to fit the need of failure process analysis if the heterogeneities are taken into account in rocks. Mesh size has great dependence on the structural property in homogeneous materials, while mesh size depends on the degree of heterogeneity of the material as well as structural property in heterogeneous materials. Mesh geometry and mesh size adjustment during crack propagation process should be based on the assumption that materials are homogenous.
出处 《岩石力学与工程学报》 EI CAS CSCD 北大核心 2005年第A01期5108-5112,共5页 Chinese Journal of Rock Mechanics and Engineering
基金 国家自然科学基金资助项目(50374020,50204003) 东北大学博士论文资助项目
关键词 数值模拟 网格效应 破裂过程 细观非均匀性 裂纹扩展 numerical simulation mesh effect failure process: mesoscopic heterogeneity crack propagation
  • 相关文献

参考文献10

  • 1Munjiza A, Andrews K R F, White J K, Combined single and smeared crack model in combined finite-discrete element method[J], Int. J.Num. Meth. Engng., 1999, 44:41-57.
  • 2Bazant Z P, Planas J. Fracture and Size Effect in Concret and Other Quasi-Brittle materials[M]. Boca Raton, FL: CRC Press, 1998,
  • 3于骁中.岩石和混凝土断裂力学[M].长沙:中南工业大学出版社,1988.382-416.
  • 4杨庆生,杨卫.断裂过程的有限元模拟[J].计算力学学报,1997,14(4):407-412. 被引量:67
  • 5魏悦广,王自强.扩展裂纹尖端弹塑性场[J].力学学报,1994,26(1):38-48. 被引量:3
  • 6周维垣,寇晓东.无单元法及其工程应用[J].力学学报,1998,30(2):193-202. 被引量:99
  • 7Schalagen E, MierJGM V. Simple lattice model for numerical simulation of fracture of concrete materials and structures[J]. Materials and Structures, 1992, 25:534-542.
  • 8Frantziskonis G, Renaudin P, Breysse D. Heterogeneous solids--part Ⅰ: Analytical and numerical 1-D results on boundary effects[J]. Eur. J Mech., A/Solids, 1997, 16(3), 409-423.
  • 9Blair S C, Cook N G. Analysis of compressive fracture in rock using statistical techniques: part Ⅰ. A non-linear rule-based model[J]. Int. J Rock Mech. Min. Sei., 1998, 35(7): 837 - 848.
  • 10唐春安,王述红,傅宇方.岩石破裂过程试验[M].北京:科学出版社,2002.

二级参考文献7

  • 1杨庆生,杨卫.界面裂纹的路径选择与数值模拟[J].力学学报,1997,29(3):355-358. 被引量:8
  • 2杨庆生,第九界全国复合材料学术会议论文集,1996年
  • 3Sha G T,Internation Jnal of Fracture,1991年,51卷,265页
  • 4Lin K Y,Internation Jnal of Fracture,1976年,12卷,4期
  • 5Lu Y Y,Comput Methods Appl Mech Eng,1994年,113卷,397页
  • 6王勖成,有限单元法基本原理与数值方法,1988年
  • 7钱伟长,弹性力学,1956年

共引文献174

同被引文献21

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部