期刊文献+

两点边值条件热弹性收缩模型的线性稳定性(英文)

NONLINEAR STABILITY CONSIDERATIONS IN THERMOELASTIC CONTACT MODEL WITH TWO DIFFERENT BOUNDARY CONDITIONS
下载PDF
导出
摘要 本文研究带Direchlet边界条件的模型问题,利用多重尺度法和二次方法,在自由端的Barber条件,并通过边界层理论的渐近匹配技术进行了分析。反映了从线性稳定性研究到非线性系统的动态过程,得到了关于解的依赖性与短暂性的发展规律。 in this paper we first use a multiple scale or two-timing method to study this model with Dirichlet boundary condition. Then, we impose the known Barber condition at the free end. This system is analyzed by the asymptotic matching techniques of boundary layer theory to derive short-time, long-time and uniform expansions. Most importantly, all analysis is extended from the traditional linear stablity considerations into the nonlinear regime and dynamic information about the history dependence and temporal evolution of the solution is obtained.
出处 《数学杂志》 CSCD 北大核心 2006年第1期1-8,共8页 Journal of Mathematics
基金 SupportedbytheNationalNaturalScienceFoundationofChina(70371032)andtheDocEducationalFoundationoftheMinistryofEduactionP.R.C.(20020486035)
关键词 非线性稳定性 热弹性收缩 Direchlet边界条件 Barber边界条件 nonlinear stability thermoelastic contact Dirichlet boundary condition barber condition
  • 相关文献

参考文献6

  • 1Barber J.R.Contact problems involving a cooled punch [J].Journal of Elasticity.1978,8:409-423.
  • 2Barber J.R.,Dundurs J.,Comninou M.Stability considerations in thermoelastic contact[J].ASME Journal of Applied Mechanics.1980,47:871-874.
  • 3Lee K.,Barber J.Frictionally excited thermoelastic instability in automotive disk breaks[J].ASME Journal of Tribology.1993,115:607-614.
  • 4Richmond O.,Hector L.G,Fridy J.M.Growth instability during nonuniform directional solidifcation of pure metals[J].ASME Journal of Applied Mechanics.1990,57:529-536.
  • 5Srinivasan M.G.,France D.M.Nonuniqueness in steady state heat transfer in prestressed duplex tubes-Analysis and case history[J].ASME Journal of Applied Mechanics.1985,48:555-558.
  • 6Kriegsmann G.A.Microwave Heating of Carbon-Coated Ceramic Fibers:A Mathematical Model[J].IMA Journal Applied Mathematics.1995,55:243-255.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部