期刊文献+

具有误差的渐进拟非扩张映象的迭代序列的收敛性 被引量:1

Convergence of iterative sequence of asymptotically quasi-nonexpansive mappings with errors
下载PDF
导出
摘要 在凸度量空间中,对渐进拟非扩张映象T证明了带混合误差的渐进Ishikawa型迭代序列收敛到不动点的一些充分必要条件,其中T不必是连续的。将文献[1]中的Banach空间上的结论推广到了完备凸度量空间。 Some sufficient and necessary conditions for the Ishikawa iterative sequences of the asymptotically quasinonexpansive mapping T with mixed errors to converge to the fixed points in the convex metric space are obtained, in which the T need not be continuous.
作者 张勇 胡润雪
出处 《成都信息工程学院学报》 2006年第1期105-107,共3页 Journal of Chengdu University of Information Technology
基金 成都信息工程学院科研基金资助项目(CRF200405)
关键词 凸度量空间 渐进拟非扩张映象 带混合误差的渐进Ishikawa迭代序列 不动点 convex metric space asymptotically quasi-nonexpansive mapping asymptotically Ishikawa iterative sequence with mixed errors fixed point
  • 相关文献

参考文献5

  • 1田有先,张石生.凸度量空间中拟压缩映象具误差的Ishikawa型迭代序列的收敛性[J].应用数学和力学,2002,23(9):889-895. 被引量:11
  • 2Liu Qihou.Iterative Sequences for Asymptotically Quasi-nonexpansive Mapping[J].J.Math.Anal.Appl.,2001,259:18-24.
  • 3W.V.Petryshyn,T.E.Williamson.Strong and weak convergence of the sequence of successive approximations for quasi-nonexpansive mappings[J].J.Math.Appl 1973,43:459-497.
  • 4M.K.Gsosh,L.Debnath.Convergence of Ishikawa iterates of quasi-nonexpansive mappings[J].J.Math.Appl.1997,207:96-103.
  • 5Liu Qihou.Iterative Sequences for Asymptotically Quasi-nonexpansive Mapping[J].J.Math.Anal.Appl.,2001,259:1-7.

二级参考文献11

  • 1[6]XU Hong-kun.A note on the Ishikawa iteration scheme[J].J Math Anal Appl,1992,167(2):582-587.
  • 2[7]Rhoades H E.Comments on two fixed point iteration methods[J].J Math Anal Appl,1976,56(2):741-750.
  • 3[8]Naimpally S A, Singh K I.Extensions of some fixed point theorems of Rhoades[J].J Math Anal Appl,1983,96(2):437-446.
  • 4[9]LIU Qi-hou.On Naimpally and Singh's open questions[J].J Math Anal Appl,1987,124(1):157-164.
  • 5[10]LIU Qi-hou.A convergence theorem of the sequence of Ishikawa iterates for quasi-contractive mappings[J].J Math Anal Appl,1990,146(2):301-305.
  • 6[11]Takahashi W.A convexity in metric space and nonexpansive mappings Ⅰ[J].Kodai Math Sem Rep,1970,22(1):142-149.
  • 7[1]Chang Shi-sheng, Cho Y J, Jung J S, et al.Iterative approximations of fixed points and solutions for strongly accretive and strongly pseudo-contractive mappings in Banach spaces[J].J Math Anal Appl,1998,224(1):149-165.
  • 8[2]Ciric L B.A generalization of Banach's contraction principle[J].Proc Amer Math Soc,1974,45(1):267-273.
  • 9[3]Chidume C E.Convergence theorems for strongly pseudo-contractive and strongly accretive mappings[J].J Math Anal Appl,1998,228(1):254-264.
  • 10[4]Chidume C E.Global iterative schemes for strongly pseudo-contractive maps[J].Proc Amer Math Soc,1998,126(9):2641-2649.

共引文献10

同被引文献10

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部