摘要
本文研究了用于测井相分析识别岩性的人工神经网络(ANN)模型设计并在SUN工作站上用基于距离D-KohonenNN、D-BPNN两个网络建立了ANN自动测井相分析系统。在实际应用中对比了AW岩相识别和传统多元统计岩相识别的效果,证明了ANN模式识别技术用于测井相分析的可行性和优越性。
In this paper,Two ANN models-D-Kohonen NN and D-BP NN, for automatic recognitions of lithofacies from well logs by analysis of well logging facies have been developcd on SUN workstation. This program of ANN faci log analysis has successfully applied in a western oil field.The result show that ANN technique is useful in analysis of well loging facies ,and this program has high accuracy for recognition of lithofacies.
出处
《地球物理学进展》
CSCD
1996年第2期53-65,共13页
Progress in Geophysics
关键词
神经网络
测井分析
岩相识别
recognition of lithofacies
analysis of well logging facies
well logs