期刊文献+

神经网络和预报集成的若干问题及其对策 被引量:1

Some Problems in Neural Network and Prediction Ensemble and its Counter Measure
下载PDF
导出
摘要 本文评述了神经网络在气象应用中存在的问题、产生的原因和网络结构设计的原则及经验,并提出了构造伪样本来诊断模型可能存在问题的方法;简述了预报集成的原理和原则,提出了构造因子子集差异法生成预报个体,进行集成,来解决小样本和因子选取问题的方案。 In this paper, the comments of problems in meteorological application of neural network and its causes of formation are given. The principles and experiences of neural network structure designs and also discussed. An approach named false sample verification method is proposed to diagnose modeling problems. Finally, the principles of prediction ensemble are briefly reviewed. It is suggested that by using the method of constructing the differences among factor subsets to generate individuals for prediction ensemble, then the problems of smaller samples and factor selection may be solved.
作者 俞善贤
出处 《科技通报》 2006年第2期159-164,共6页 Bulletin of Science and Technology
基金 浙江省自然科学基金(400038)资助
关键词 神经网络 预报集成 伪样本检验法 因子子集差异法 neural network prediction ensemble false sample verification factor subset differences
  • 相关文献

参考文献16

二级参考文献26

共引文献556

同被引文献6

  • 1Cortes C, Vapnik V. Support vector networks [J]. Machine Learning, 1995,20:273-297.
  • 2Zhou Z H, Jiang Y.NeC4.5: neural ensemble based C4.5 [J]. Knowledge and Data Engineering, 2004 , 16 (6) : 770-773.
  • 3Blake C, Keogh E, Merz C J. UCI repository of machine learning databases. [EB/OL] [http://www.ics.uci.edu/- mlearrdMLRepository.html], Department of Information and Computer Science, University of California, Irvine, CA, 1998.
  • 4Schapire R. E.. The strength of weak learnability[J]. Ma- chine Learning, 1990,5 (2) : 197-227.
  • 5Friedman L.. Bagging predictors [J], Machine Learning , 1996,24(2) : 123-140.
  • 6Zhou Z H, Wu J X, Tang W.Ensemble neural networks: Many could be better than all [J]. Artificial Intelligence , 2002,137 (1-2) : 239-263.

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部