期刊文献+

机器人机构建模的几何方法 被引量:2

Geometric methods in the modeling of robot mechanisms
下载PDF
导出
摘要 讨论了经典力学系统中拉格朗日方程的黎曼几何表示(黎曼流形上的牛顿力学)和力学系统拓扑图表示之间的关系,作为应用,讨论了机器人系统的拓扑图表示和动力学模型计算等,与已有的机器人动力学分析办法相比,基于黎曼几何和拓扑图表示方法的动力学分析更加简便,更加适合机器人动力学机械化(自动)建模. The relationship between the Riemannian geometric framework of Lagrange equation and the topology graph representation of classic mechanical systems is discussed. As the example, robot mechanism is considered, in eluding the topology graph representation, computation of the mathematical model. This method based on Riemann geometry with simpler formulation is more suitable for computer-aided modeling and dynamic analysis.
出处 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2006年第2期131-133,155,共4页 Journal of Zhejiang University(Science Edition)
基金 浙江大学宁波理工学院研究资助项目(No.1051157G301)
关键词 几何力学 机器人机构 黎曼几何 拓扑图 建模机械化 geometric mechanics robot mechanism Riemannian geometry Topological graph machine modeling
  • 相关文献

参考文献7

  • 1MARSDEN J E,RATIU T S.Introduction to Mechanics and Symmetry[M].New York:Springer-Verlag,1994.
  • 2LEWIS A D,MURRAY R M.Configuration controllability of simple mechanical control systems[J].XSIAM Review,1999,41(3):555-574.
  • 3BLOCH A M,LEONARD N E,MARSDEN J E.Controlled Lagrangians and stabilization of mechanical systems Ⅰ:The first matching theorem[J].IEEE Transaction on Automatic Control,2000,45:2253-2270.
  • 4AGHNNAN N,ROUCHON P.An intrisic observer for a class of lagrangian systems[J].IEEE Transaction on Automatic Control,2003,48:936 945.
  • 5MIGUEL C.Dissipative control of mechanical systems:A geometric approach[J].SIAM J of Control and Optimization,2003,48:936-945.
  • 6LIU G,LI Z.A unified geometric approach to modeling and control of constrained mechanical systems[J].IEEE Transaction on Robotics and Automation,2002,18:574-587.
  • 7ANORLD VI.Mathematical Method of Classical Mechanics[M].New York:Springer-Verlag,1989.

同被引文献21

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部