期刊文献+

基本解方法求解一个三维线弹性力学反问题 被引量:4

Method of fundamental solutions for a three-dimensional inverse problem in linear elasticity
下载PDF
导出
摘要 将用于求解椭圆型偏微分方程边值问题的基本解方法应用于求解一个三维线弹性反问题,即Navier方程组的Cauchy问题.基本解方法离散方程所得的线性方程组是高度病态的,常见的求解方法如最小二乘法等无法得到合理的解.文中应用Tikhonov正则化和截断奇异值分解这两种正则化方法求解线性方程组,所需正则化参数则根据L-曲线确定,克服了问题的病态性.数值算例表明,本文方法能有效地求解三维线弹性力学反问题,而且这两种正则化方法所得到的结果精度相当. The application of the method of fundamental solutions is considered for the numerical solution to a threedimensional inverse problem in linear elasticity, i. c. , the Cauchy problem associated with the Navier system. The coefficient matrix arising from the method of fundamental solutions is highly ill-posed, and standard methods for solving matrix equations fail to give an acceptable solution. Regularization methods, i. e. , the Tikhonov regularization method and truncated singular value decomposition are employed to solve the resulting matrix equations, with the regularization parameter determined by the L-curve method. Numerical experiments indicate that the method proposed can yield stable, accurate solutions to the inverse problem, and the solution is convergent with respect to decreasing amount of data noise. It's found that the two regularization methods lead to solutions of comparable accuracy.
机构地区 浙江大学数学系
出处 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2006年第2期134-138,共5页 Journal of Zhejiang University(Science Edition)
基金 863探索基金
关键词 基本解方法 CAUCHY问题 正则化方法 线弹性力学 反问题 fundamental solutions Cauchy problem regularization linear elasticity inverse problem
  • 相关文献

参考文献13

  • 1OGATA H,AMONO K,SUGIHARA M,et al.A fundamental solution method for viscous flow problems with obstacles in a periodic array[J].J of Computational and Applied Mathematics,2003,152 (1,2):411-425.
  • 2GOLBERG M A.The method of fundamental solutions for Poisson's equation[J].Engineering Analysis with Boundary Elements,1995,16(3):205-213.
  • 3BALAKRIS HNAN K,RAMACHANDRAN P A.The method of fundamental solutions for linear diffusion-reaction equations[J].Mathematical and Computer Modeling,2000,31(2,3):221-237.
  • 4YEIH W C,KOYA T,MURAT.An inverse problem in elasticity with partially overspecified boundary conditions[J].J of Applied Mechanics,1993,60(2):595-606.
  • 5MARIN L,ELLIOTT L,INGHAM D B,et al.Boundary element method for the Cauchy problem in linear elasticity[J].Engineering Analysis with Boundary Elements,2001,25(9):783-793.
  • 6MARIN L,LESNIC D.BEM first-order regularization method in linear elasticity for boundary identification[J].Computer Methods Applied Mechanics and Engineering,2003,192(16~18):2059-2071.
  • 7MARIN L,ELLIOTT L,INGHAM D B,et al.Boundary element regularization methods for solving the Cauchy problem in linear elasticity[J].Inverse Problems in Engineering,2002,10(4):335-357.
  • 8POULLIKKAS A,KARAGEORGHIS A,GEORGIOU G.The method of fundamental solutions for three-dimensional elastostatics problems[J].Computers and Structures,2002,80(3,4):365-370.
  • 9FAIRWEATHER G,KARAGEORGHIS A.The method of fundamental solutions for elliptic boundary value problems[J].Advances in Computational Mathematics,1998,9(2,3):69-95.
  • 10MITIC P,RASHED Y F.Convergence and stability of the method of meshless fundamental solutions using an array of randomly distributed source[J].Engineering Analysis with Boundary Elements,2004,28(2):143-153.

同被引文献47

  • 1史翊翔,蔡宁生.固体氧化物燃料电池阴极数学模型与性能分析[J].中国电机工程学报,2006,26(4):82-87. 被引量:9
  • 2Brinker C J, Lu Y, Sellinger A, et al. Evaporation-induced self-assembly: nanostructures made easy[J]. Advanced Materials, 1999, 11(7): 579-585.
  • 3Alberius P C A, Frindell K L, Hayward R C, et al. General predictive syntheses of cubic hexagonal and lamenar silica and titania mesostructured thin films[J]. Chemistry of Materials, 2002, 14(8): 3284-3294.
  • 4Jain A, Rogojevic S, Ponoth S, et al. Porous silica materials as low-k dielectrics for electronic and optical interconnects[J]. The Solid Films, 2001, 398(399): 513-522.
  • 5Nait-Ali B, Haberko K, Vesteghem H, et al. Thermal conductivity of highly porous zirconia[J]. Journal of the European Ceramic Society, 2006, 26(16): 567-574.
  • 6Arrand H F, Benson T M, Loni A, et al. Self-aligned porous silicon optical waveguides[J]. Electronics Letters, 1997, 33(20): 1724-1725.
  • 7Himcinschi C, Friedrich M, Murray C, et al. Characterization of silica xerogel films by variable-angle spectroscopic ellipsometry and infrared spectroscopy[J]. Semiconductor Science and Technology, 2001, 16(11): 806-811.
  • 8Othman M T, Lubguban J A, Lubguban AA, et al. Characterization of porous low-k films using variable angle spectroscopic ellipsometry [J]. Journal ofAppliedPhysics, 2006, 99(8): 083503-0835010.
  • 9Braun M. Effective optical properties of nanoporous thin-film[D]. Los Angeles, CA.. University of California, 2004.
  • 10Kondoh E, Baklanov M R, Lin E, et al. Comparative study of pore size of low-dielectric-constant porous spin-on-glass films using different methods of nondestructive instrumentation[J]. Japanese Journal ofAppliedPhysiscs, 2001, 40(4A): L323-L326.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部